DOI QR코드

DOI QR Code

Adsorption kinetic and mechanistic view of aqueous ferric ion onto bio-natural rice grains

  • Al-Anber, Mohammed A. (Department of Chemistry, Faculty of Science, Mu'tah University)
  • Received : 2015.11.29
  • Accepted : 2016.11.09
  • Published : 2017.01.25

Abstract

Adsorption kinetics of aqueous ferric ion ($Fe^{3+}$) onto bio-natural rice grains (BRG) have been studied in a batch system. The influence of contact time (0-180 minutes), the dosage of BRG adsorbent (10, 20, 40, and $60gL^{-1}$), and ambient temperature (27, 37, 47, and $57^{\circ}C$) for the adsorption system have been reported. The equilibrium time achieved after 20 minutes of adsorption contact time. The maximum removal of ferric ion is 99% by using $60gL^{-1}$ of BRG, $T=37^{\circ}C$, and $50mgL^{-1}$ ferric ion solution. Adsorption kinetic and diffusion models, such as pseudo-first order, pseudo-second order, and Weber-Morris intra-particle diffusion model, have been used to describe the adsorption rate and mechanism of the ferric ion onto BRG surface. The sorption data results are fitted by Lagergren pseudo-second order model ($R^2=1.0$). The kinetic parameters, rate constant, and sorption capacities have been calculated. The new information in this study suggests that BRG could adsorb ferric ion from water physiosorption during the first 5 minutes. Afterward, the electrostatic interaction between ferric ion and BGR-surface could take place as a very weak chemisorptions process. Thus, there is no significant change could be noticed in the FTIR spectra after adsorption. I recommend producing BGR as a bio-natural filtering material for removing the ferric ion from water.

Keywords

References

  1. Akaninwor, J.O., Wegwu, M.O. and Iba, I.U. (2007), "Removal of iron, zinc, and magnesium from polluted wastewater samples using thioglycolic acid modified oil-palm", Afr. J. Biochem. Res., 1(2), 011-013.
  2. Aksu, Z. (2001), "Equilibrium and kinetic modeling of cadmium(II) biosorption by C. vulgaris in a batch system: effect of temperature", Separat. Purif. Tech., 21, 285-294. https://doi.org/10.1016/S1383-5866(00)00212-4
  3. Al-Anber, M. (2007), "Removal a model solution of trivalent iron using jordanian natural zeolites", Asian J. Chem., 19(5), 3493-3501.
  4. Al-Anber, M. (2010), "Removal of high-level $Fe^{3+}$ from aqueous solution using Jordanian inorganic materials: Bentonite and quartz", Desalination, 250, 885-891. https://doi.org/10.1016/j.desal.2009.06.071
  5. Al-Anber, M. (2015a), "Adsorption modeling and decontamination of aqueous $Fe^{+3}$ ions using Jordanian Feldspar (JF)", Int. J. Environ. Sci. Tech., 12, 139-150. https://doi.org/10.1007/s13762-013-0410-1
  6. Al-Anber, M. (2016a), "Adsorption thermodynamics of inorganic aqueous ferric ion onto cypress seeds", Biointerf. Res. Appl. Chem., 6(2), 1157-1165
  7. Al-Anber, M. (2016b), "Adsorption thermodynamics of inorganic aqueous ferric ion onto rice grain", Applied Water Science. (in Press)
  8. Al-Anber, M. and Al-Anber, Z. (2008a), "Utilization of natural zeolite as ion-exchange and sorbent material in the removal of iron", Desalination, 225(1-3), 70-81. https://doi.org/10.1016/j.desal.2007.07.006
  9. Al-Anber, M.A. (2014b), "Adsorption properties of aqueous ferric ion on the natural cotton fiber: kinetic and thermodynamic studies", Desalin. Water Treat., 52(13-15), 2560 - 2571. https://doi.org/10.1080/19443994.2013.795875
  10. Al-Anber, M.A., Abu-Rayyan, A. and Almogbel, M.S. (2016c), "Removal of inorganic ferric ion from water by using coal of date palm seeds (CDPS)", Biointerf. Res. Appl. Chem., 6(2), 1149-1156.
  11. Al-Anber, M.A., Al-Anber, Z.A., Al-Momani, I., Al-Momani, F. and Abu-Salem, Q. (2014a), "The performance of defatted jojoba seeds for the removal of toxic high-concentration of the aqueous ferric ion", Desalin. Water Treat., 52(1-3), 293-304. https://doi.org/10.1080/19443994.2013.784878
  12. Al-Anber, Z.A. and Al-Anber, M.A. (2008b), "Thermodynamics and kinetics studies of iron (III) adsorption by olive cake in a batch system", J. Mexican Chem. Soc., 52(2),108-115.
  13. Babalola, J.O., Koiki, B.A., Eniayewu, Y., Salimonu, A., Olowoyo, J.O., Oninla, V.O., Alabi, H.A., Ofomaja, A.E. and Omorogie, M.O. (2016b), "Adsorption efficacy of Cedrela odorata seed waste for dyes: Non linear fractal kinetics and non linear equilibrium studies", J. Environ. Chem. Eng., 4(3), 3527-3536. https://doi.org/10.1016/j.jece.2016.07.027
  14. Babalola, J.O., Olowoyo, J.O., Durojaiye, A.O., Olatunde, A.M., Unuabonah, E.I. and Omorogie, M.O. (2016a), "Understanding the removal and regeneration potentials of biogenic wastes for toxic metals and organic dyes", J. Taiwan Inst. Chem. Eng., 58, 490-499. https://doi.org/10.1016/j.jtice.2015.07.003
  15. Badawi, T., El-Hissewy, A.A. and El-Kaddy, A. (1997), "Cahiers options mediterraneennes, Rice quality: a pluridisciplinary approach", Proceedings of the international Symposium held in Nottingham, UK.
  16. Boyd, G.E., Adamson, A.W. and Myers, L.S. (1947), "The exchange adsorption of ion from aqueous solution by organic zeolites, II, kinetics", J. Am. Chem. Soc., 69(11), 2836-2848. https://doi.org/10.1021/ja01203a066
  17. Burke, A., Yilmaz, E., Hasirci, N. and Yilmaz, O. (2002), "Ferric ion removal from solution through adsorption on chitosan", J. Appl. Polym. Sci., 84(6), 1185-1192. https://doi.org/10.1002/app.10416
  18. Edwin Vasu, A. (2008), "Adsorption of Ni(II), Cu(II) and Fe(III) from aqueous solution using activated carbon", E-J. Chem., 5, 1-9. https://doi.org/10.1155/2008/690241
  19. El-Zahhar, A.A., Sharaf El-Deen, S.E.A. and Sheha, R.R. (2013), "Sorption of iron from phosphoric acid solution using polyacrylamide grafted activated carbon", Arab J. Nucl. Sci. Appl., 46(4), 27-38.
  20. Guidelines for drinking-water quality (1996), "Health criteria and other supporting information", World Halth Organization, 2nd Edition, 2, Geneva.
  21. Hem, G.J.D. and Cropper, W.H. (1959), "Survey of ferrous-ferric chemical equilibria and redox potentials", Geological Survey Water-Supply Paper, 1459-A series, Washington, D.C., U.S.
  22. Ho, Y.S. (2004), "Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassumsp biomass by Cruz CCV, da Costa, ACA Henriques CA, Luna AS", Biores. Tech., 93(3), 321-324. https://doi.org/10.1016/j.biortech.2003.11.008
  23. Ho, Y.S. and McKay, G. (1999), "Pseudo-second order model for sorption processes", Process Biochem., 34(5), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  24. Horsfall, M., Jnr, M. and Ayebaemi, I.S. (2004), "Studies on the effect of pH on the sorption of $Pb^{+2}$ and $Cd^{+2}$ ions from aqueous solutions by Caladium bicolor (Wild cocoyam) biomass", Environ. Biotech., 7(3), 1-11.
  25. Kannan N. and Meenakshisundaram M. (2002), "Adsorption of Congo red on various activated carbons. A comparative study", Water Air Soil Poll., 138, 289-305. https://doi.org/10.1023/A:1015551413378
  26. Karthikeyan, G., Andal, N.M. and Anbalagan, K. (2005), "Adsorption studies of ferric on chitin", J. Chem. Sci., 117(6), 663-672. https://doi.org/10.1007/BF02708296
  27. Kim, D.S. (2004), "Adsorption characteristics of Fe(III) and Fe(III)-NTA complex on granular activated carbon", J. Hazard. Mater., 106B, 67-84.
  28. Lagergren, S. (1898), "Zurtheorie der sogenannten adsorption gelosterstoffe. Kungliga. Svenska Vetenskapsakademiens", Handlingar, 24(4), 1-39.
  29. Lakshmi Narayanan Rao, K.C., Krishniah, K. and Ashutosh, A. (1994), "Color removal from dye stuff industry effluent using activated carbon", Ind. J. Chem. Tech., 1, 13-19.
  30. Lauffer, R. (1992), Iron and human diseases, CRC Press, London.
  31. Mohan, D. and Chander, S. (2006), "Removal and recovery of metal ions from acid mine drainage using lignite-a low cost sorbent", J. Hazard. Mater., 137(3), 1545-1553. https://doi.org/10.1016/j.jhazmat.2006.04.053
  32. Mondal, M.K. (2009), "Removal of Pb(II) ions from aqueous solution using activated tea waste: Adsorption on a fixed bed column", J. Environ. Manage., 90, 3266-3271. https://doi.org/10.1016/j.jenvman.2009.05.025
  33. Monser, L. and Adhoum, N. (2002), "Modified activated carbon for the removal of copper, zinc, chromium, and cyanide from wastewater", Separat. Purif. Tech., 26(2-3), 137-146. https://doi.org/10.1016/S1383-5866(01)00155-1
  34. Nomanbhay, S.F. and Palanisamy, K. (2005), "Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal", Elec. J. Biotech., 8(1), 44-53.
  35. Ogbodu, R.O., Omorogie, M.O., Unuabonah, E.I. and Babalola, J.O. (2015), "Biosorption of heavy metals from aqueous solutions by parkia biglobosa biomass: equilibrium, kinetics, and thermodynamic studies", Environ. Prog. Sustain. Energy, 34(6), 1694-1704. https://doi.org/10.1002/ep.12175
  36. Omorogie, M.O., Babalola, J.O., Unuabonah, E.I. and Gong, J.R. (2016a), "Clean technology approach for the competitive binding of toxic metal ions onto MnO2 nano-bioextractant", Clean Tech. Environ. Policy, 18, 171-184. https://doi.org/10.1007/s10098-015-1004-z
  37. Omorogie, M.O., Babalola, J.O., Unuabonah, E.I. and Gong, J.R. (2015), "New facile benign agrogenicnanoscale titania material-Remediation potential for toxic inorganic cations", J. Water Proc. Eng., 5, 95-100. https://doi.org/10.1016/j.jwpe.2015.01.003
  38. Omorogie, M.O., Babalola, J.O., Unuabonah, E.I., Song, W. and Gong, J.R. (2016b), "Efficient chromium abstraction from aqueous solution using a low-cost biosorbent: Nauclea diderrichii seed biomass waste", J. Saudi Chem. Soc., 20, 49-57 https://doi.org/10.1016/j.jscs.2012.09.017
  39. Ouki, K., Neufeld, R.D. and Perry, R. (1997), "Use of activated carbon for the recovery of chromium from industrial wastewaters", J. Chem. Tech. Biotech., 70(1), 3-8. https://doi.org/10.1002/(SICI)1097-4660(199709)70:1<3::AID-JCTB664>3.0.CO;2-5
  40. Oyedeji, O.A. and Osinfade, G.B. (2010), "Removal of copper (II), iron (III), and lead (II) ions from monocomponent simulated waste effluent by adsorption on coconut husk", Afr. J. Environ. Sci. Tech., 4(6), 382-387. https://doi.org/10.5897/AJEST09.224
  41. Ramous, R.L., Flores, P.E., Pina, A.A., Barron, J.M. and Coronado, R.M. (2005), "Adsorption of cadmium (II) from aqueous solution onto activated carbon cloth", Separat. Sci. Tech., 40, 2079-2094. https://doi.org/10.1081/SS-200068485
  42. Senthil Kumar, P., Gayathri, R. and Prabhu Arunkumar, R. (2010), "Adsorption of Fe(III) ions from aqueous solution by Bengal gram husk powder: Equilibrium isotherms and kinetic approach", Elec. J. Environ. Agricult. Food Chem., 9(6), 1047-1058.
  43. Suthepong, S. and Siraneem, S. (2009), "Utilization of pulp and paper industrial wastes to remove heavy metals from metal finishing wastewater", J. Environ. Manage., 90, 3283-3289. https://doi.org/10.1016/j.jenvman.2009.05.006
  44. Tan, J., Wei, X., Ouyang, Y., Fan, J. and Liu R. (2014), "Adsorption properties of copper (II) ion from aqueous solution by starch-grafted polyacrylamide and crosslinked starchgrafted polyacrylamide", Periodica Polytechnica Chemical Eng., 58(2), 131-139. https://doi.org/10.3311/PPch.7185
  45. Unuabonah, E.I., Adedapo, A.O., Nnamdi, C.O., Adewuyi, A., Omorogie, M.O., Adebowale, K.O., Olu-Owolabi, B.I., Ofomaja, A.E. and Taubert, A. (2015), "Successful scale-up performance of a novel papaya-clay combo adsorbent: up-flow adsorption of a basic dye", Desalinat. Water Treat., 56(2), 536-551. https://doi.org/10.1080/19443994.2014.944572
  46. Wan, W.S., Ghani, S.Ab. and Kamari, A. (2005), "Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads", Biores. Technol., 96, 443-450. https://doi.org/10.1016/j.biortech.2004.05.022
  47. Weber, J.W.J. and Digiano, F.O. (1996), Process dynamics in environmental system, Environmental Science and Technology Series, Wiley, New York.
  48. Yeddou, N. and Bensmaili, A. (2007), "Equilibrium and kinetic of iron adsorption by eggshells in a batch system: effect of temperature", Desalination, 206, 127-134. https://doi.org/10.1016/j.desal.2006.04.052
  49. Zamani, A., Shokri, R., Yaftian, M. and Parizanganeh, A. (2013), "Adsorption of lead, zinc and cadmium ions from contaminated water onto Peganum harmala seeds as biosorbent", Int. J. Environ. Sci. Tech., 10, 93-102. https://doi.org/10.1007/s13762-012-0107-x
  50. Zawani, Z., Luqman, C.A. and Choong, Th.S.Y. (2009), "Equilibrium, kinetic and thermodynamic studies:Adsorption of removal black 5 on the palm kernel shell activated carbon (PKS-AC)", Eur. J. Scientif. Res., 37, 63-71.

Cited by

  1. A comparative study of thermochemical and cold plasma treatment on lignin-based activated carbon for adsorbing Fe(III) vol.5, pp.5, 2018, https://doi.org/10.1088/2053-1591/aac232