참고문헌
- Abhilash, M. (2010), "Potential applications of nanoparticles", Int. J. Pharma Bio Sci., 1(1), 1-12.
- Adams, C.F., Rai, A., Sneddon, G., Yiu, H.H., Polyak, B. and Chari, D.M. (2015), "Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations", Nanomed. Nanotech. Biology Med., 11(1), 19-29. https://doi.org/10.1016/j.nano.2014.07.001
- Ahmadi, R., Masoudi, A., Hosseini, H.R.M. and Gu, N. (2013), "Kinetics of magnetite nanoparticles formation in a one-step low temperature hydrothermal process", Ceram. Int., 39(5), 4999-5005. https://doi.org/10.1016/j.ceramint.2012.11.097
- Akar, N., Asar, B., Dizge, N. and Koyuncu, I. (2013), "Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles", J. Membrane Sci., 437, 216-226. https://doi.org/10.1016/j.memsci.2013.02.012
- Al-Hobaib, A.S., El Ghoul, J. and El Mir, L. (2015), "Synthesis and characterization of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles", Membrane Water Treat., 6(4), 309-321. https://doi.org/10.12989/mwt.2015.6.4.309
- Auffan, M., Achouak, W., Rose, J., Roncato, M., Chaneac, C., Waite, D.T., Masion, A., Woicik, J.C., Wiesner, M.R. and Bottero, J. (2008), "Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli", Environ. Sci. Technol., 42, 6730- 6735. https://doi.org/10.1021/es800086f
- Ayyappan, S., Philip, J. and Raj, B. (2009), "Solvent polarity effect on physical properties of CoFe2O3 nanoparticles", J. Phys. Chem. C, 113, 590-596. https://doi.org/10.1021/jp8083875
- Bani-Melhem, K., Al-Qodah, Z., Al-Shannag, M., Qasaimeh, A., Qtaishat, M.R. and Alkasrawi, M. (2015), "On the performance of real grey water treatment using a submerged membrane bioreactor system", J. Membrane Sci., 476, 40-49. https://doi.org/10.1016/j.memsci.2014.11.010
- Basri, H., Ismail, A.F. and Aziz, M. (2011), "Polyethersulfone (PES) ultrafiltration (UF) membranes loaded with silver nitrate for bacteria removal", Membrane Water Treat., 2(1), 25-37. https://doi.org/10.12989/mwt.2011.2.1.025
- Behera, S.S., Patra, J.K., Pramanik, K., Panda, N. and Thatoi, H. (2012), "Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles", World J. Nano Sci. Eng., 2, 196-200. https://doi.org/10.4236/wjnse.2012.24026
- Calderon, B. and Fullana, A. (2015), "Heavy metal release due to aging effect during zero valent iron nanoparticles remediation", Water Res., 83, 1-9. https://doi.org/10.1016/j.watres.2015.06.004
- Chen, L., Kong, W., Yao, J., Zhang, H., Gao, B., Li, Y., Bu, H., Chang, A. and Jiang, C. (2015), "Synthesis and characterization of Mn-Co-Ni-O ceramic nanoparticles by reverse micro emulsion method", Ceram. Int., 41(2), 2847-2851. https://doi.org/10.1016/j.ceramint.2014.10.106
- Chen, Y., Zhang, Y., Liu, J., Zhang, H. and Wang, K. (2012), "Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions", Chem. Eng. J., 210, 298-308. https://doi.org/10.1016/j.cej.2012.08.100
- Cheng, P., Huang, Z.G., Zhuang, Y., Fang, L.C., Huang, H., Deng, J., Jiang, L.L., Yu, K.K., Li, Y. and Zheng, J.S. (2014), "A novel regeneration-free E. coli O157:H7 amperometric immunosens or based on functionalised four-layer magnetic nanoparticles", Sens. Actuat. B: Chem., 204, 561-567. https://doi.org/10.1016/j.snb.2014.08.008
- Cho, D.W., Song, H., Schwartz, F.W., Kim, B. and Jeon, B.H. (2015), "The role of magnetite nanoparticles in the reduction of nitrate in ground water by zero-valent iron", Chemosp., 125, 41-49. https://doi.org/10.1016/j.chemosphere.2015.01.019
- Chrysochoou, M., Johnston, C.P. and Dahal, G.A. (2012), "Comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valentiron", J. Hazard Mater., 201, 33-42.
- Colombo, M., Carregal-Romero, S., Casula, M.F., Gutierrez, L., Morales, M.P., Bohm, I.B. and Parak, W.J. (2012), "Biological applications of magnetic nanoparticles", Chem. Soc. Rev., 41(11), 4306-4334. https://doi.org/10.1039/c2cs15337h
- Damodar, R.A., You, S.J. and Chou, H.H. (2009), "Study the self-cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes", J. Hazard. Mater., 172, 1321-1328. https://doi.org/10.1016/j.jhazmat.2009.07.139
- Dan, Z.G., Ni, H.W., Xu, B.F., Xiong, J. and Xiong, P.Y. (2005), "Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions", Thin Solid. Film., 492, 93-100. https://doi.org/10.1016/j.tsf.2005.06.100
- Fan, J., Guo, Y., Wang, J. and Fan, M. (2009), "Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zero valent iron particles", J. Hazard. Mater., 166(2), 904-910. https://doi.org/10.1016/j.jhazmat.2008.11.091
- Grass, R.N., Athanassiou, E.K. and Stark, W.J. (2007), "Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis", Angew. Chem. Int. Ed., 46(26), 4909-4912. https://doi.org/10.1002/anie.200700613
- Hufschmid, R., Arami, H., Ferguson, R.M., Gonzales, M., Teeman, E., Brush, L.N., Browning, N.D. and Krishnan, K.M. (2015), "Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition", Nanoscale, 7(25), 11142-11154. https://doi.org/10.1039/C5NR01651G
- Ikeda, S., Akamatsu, K., Nawafune, H., Nishino, T. and Deki, S. (2004), "Formation and growth of copper nanoparticles from ion-doped precurs or polyimide layers", J. Phys. Chem. B., 108, 15599-15607. https://doi.org/10.1021/jp0478559
- Iniyavan, P., Balaji, G.L., Sarveswari, S. and Vijayakumar, V. (2015), "CuO nanoparticles: synthesis and application as an efficient reusable catalyst for the preparation of xanthenesubstituted 1,2,3-triazoles via click chemistry", Tetrahedron Lett., 56(35), 5002-5009. https://doi.org/10.1016/j.tetlet.2015.07.016
- Iwahori, K., Watanabe, J.I., Tani, Y., Seyama, H. and Miyata, N. (2014), "Removal of heavy metal cations by biogenic magnetite nanoparticles produced in Fe (III)-reducing microbial enrichment cultures", J. Biosci. Bioeng., 117(3), 333-335. https://doi.org/10.1016/j.jbiosc.2013.08.013
- Jang, M.H., Lim, M. and Hwang, Y.S. (2014), "Potential environmental implications of nanoscale zerovalent iron particles for environmental remediation", Environ. Hlth. Toxicol., 29, 1-9. https://doi.org/10.1002/tox.20767
- Jarosova, B., Filip, J., Hilscherova, K., Tucek, J., Simek, Z., Giesy, J.P. and Blaha, L. (2015), "Can zerovalent iron nanoparticles remove water bornee strogens?", J. Environ. Manage., 150, 387-392. https://doi.org/10.1016/j.jenvman.2014.12.007
- Jian, X. (2007), "Synthesis and reactivity of membrane-supported bimetallic nanoparticles for pcb and trichloroethylene dechlorination", University of Kentucky Doctoral Dissertations, Paper 561.
- Karlsson, M.N.A., Deppert, K., Wacaser, B.A., Karlsson, L.S. and Malm, J.O. (2005), "Size-controlled nanoparticles by thermal cracking of iron pentacarbonyl", Appl. Phys. A Mater. Sci. Proc., 80, 1579-83. https://doi.org/10.1007/s00339-004-2987-1
- Karode, S.K., Gupta, B.B. and Courtois, T. (2000), "Ultrafiltration of raw Indian sugar solution using polymeric and mineral membranes", Sep. Sci. Technol., 35(15), 2473-2483. https://doi.org/10.1081/SS-100102350
- Khalil, M.I. (2015), "Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron (III) salts as precursors", Arab. J. Chem., 8(2), 279-284. https://doi.org/10.1016/j.arabjc.2015.02.008
- Kim, J.S., Kuk, E. and Yu, K.N. (2007), "Antimicrobial effects of silver nanoparticles, nanomedicine:nanotechnology", Biol. Med., 3(1), 95-101.
- Kim, K.H., Lee, J.S., Hong, H.P., Han, J.Y., Park, J.W. and Min, B.R. (2015), "The effect of Fullerene (C60) nanoparticles on the surface of PVDF composite membrane", Membrane Water Treat., 6(5), 423-437. https://doi.org/10.12989/mwt.2015.6.5.423
- Kumar, R., Sakthivel, R., Behura, R., Mishra, B.K. and Das, D. (2015), "Synthesis of magnetite nanoparticles from mineral waste", J. Alloy. Compound., 645, 398-404. https://doi.org/10.1016/j.jallcom.2015.05.089
- Lee, C., Kim, J.Y., Lee, W.I., Nelson, K.L., Yoon, J. and Sedlak, D.L. (2008), "Bactericidal effect of zerovalent iron nanoparticles on Escherichia coli", Environ. Sci. Tech., 42(13), 4927-4933. https://doi.org/10.1021/es800408u
- Lee, H.S., Im, S.J., Kim, J.H., Kim, H.J., Kim, J.P. and Min, B.R. (2008), "Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles", Desalination, 219(1-3), 48-56. https://doi.org/10.1016/j.desal.2007.06.003
- Lefevre, E., Bossa, N., Wiesner, M.R. and Gunsch C.K. (2016) "A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities", Sci. Total Environ., 565, 889-901. https://doi.org/10.1016/j.scitotenv.2016.02.003
- Li, J., Xu, Z., Yang, H., Yu, L. and Liu, M. (2009), "Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane", Appl. Surf. Sci., 255, 4725-4732. https://doi.org/10.1016/j.apsusc.2008.07.139
- Li, X.Q., Elliott, D.W. and Zhang, W.X. (2006), "Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects", Crit. Rev. Solid State Mater. Sci., 31(4), 111-122. https://doi.org/10.1080/10408430601057611
- Li, Z., Greden, K., Alvarez, P.J., Gregory, K.B. and Lowry, G.V. (2010), "Adsorbed polymer and NOM limits adhesion and toxicity of nanoscale zerovalent iron to E. coli", Environ. Sci. Technol., 44(9), 3462-3467. https://doi.org/10.1021/es9031198
- Liang, J., Du, N., Song, S. and Hou, W. (2015), "Magnetic demulsification of diluted crude oil-in-water nano emulsions using oleicacid-coated magnetite nanoparticles", Colloid. Surf. A: Phys. Chem. Eng. Aspect., 466, 197-202. https://doi.org/10.1016/j.colsurfa.2014.11.050
- Liu, P.C., Hsieh, J.H., Li, C., Chang, Y.K. and Yang, C.C. (2009), "Dissolution of Cu nanoparticles and antibacterial behaviors of TaN-Cu nanocomposite thin films", Thin Solid. Film., 517, 4956-4960. https://doi.org/10.1016/j.tsf.2009.03.109
- Ma, B., Yu, W., Jefferson, W.A., Liu, H. and Qu, J. (2015), "Modification of ultrafiltration membrane with nanoscale zerovalent iron layers for humic acid fouling reduction", Water Res., 15(71), 140-149.
- Machado, S., Pinto, S.L., Grosso, J.P., Nouws, H.P.A., Albergaria, J.T. and Delerue-Matos, C. (2013), "Green production of zero-valent iron nanoparticles using tree leaf extracts", Sci. Total Environ., 445, 1-8.
- Maity, D., Kale, S.N., Kaul-Ghanekar, R., Xue, J.M. and Ding, J. (2009), "Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri (ethyleneglycol)", J. Magnet. Magnet. Mater., 321(19), 3093-3098. https://doi.org/10.1016/j.jmmm.2009.05.020
- Mansoori, G.A., Bastami, T.R, Ahmadpour, A. and Eshaghi, Z. (2008), "Environmental application of nanotechnology", Ann. Rev. Nano Res., 2, Chap. 2.
- Moce-Llivina, L., Jofre, J. and Muniesa, M., (2003), "Comparison of polyvinylidene fluoride and polyether sulfone membranes in filtering viral suspensions", J. Virolog. Meth., 109(1), 99-101. https://doi.org/10.1016/S0166-0934(03)00046-6
- Nikalje, A.P. (2015), "Nanotechnology and its applications in medicine", Med. Chem., 5(2), 81-89.
- Ozdemir, G., Limoncu, M.H. and Yapar, S. (2010), "The antibacterial effect of heavy metal and cetylpridinium-exchanged montmorillonites", Appl. Clay Sci., 48, 319-323. https://doi.org/10.1016/j.clay.2010.01.001
- Pivin, J.C., Sendova-Vassileva, M., Lagarde, G., Singh, F. and Podhorodecki, A. (2006), "Optical activation of Eu3+ ions by Ag nanoparticles in ion exchanged silica-gel films", J. Phys. D: Appl. Phys., 39, 2955-2958. https://doi.org/10.1088/0022-3727/39/14/013
- Qiu, X., Fang, Z., Yan, X., Cheng, W. and Lin, K. (2013), "Chemical stability and toxicity of nanoscale zero-valent iron in the remediation of chromium contaminated watershed", Chem. Eng. J., 220, 61-66. https://doi.org/10.1016/j.cej.2012.11.041
- Rajabi, H., Ghaemi, N., Madaeni, S.S., Daraei, P., Astinchap, B., Zinadini, S. and Razavizadeh, S.H. (2015), "Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: Influence of nano filler shape on characterization and fouling resistance", Appl. Surf. Sci., 349, 66-77. https://doi.org/10.1016/j.apsusc.2015.04.214
- Rehan, Z.A., Gzara, L., Khan, S.B., Alamry, K.A., El-Shahawi, M.S., Albeirutty, M.H., Figoli, A., Drioli, E. and Asiri, A.M. (2016), "Synthesis and characterization of silver nanoparticles-filled polyethersulfone membranes for antibacterial and anti-biofouling application", Rec. Patent. Nanotech., 10(2), 1-21.
- Rosas, I., Collado, S., Gutierrez, A. and Diaz, M. (2014), "Foulingmechanisms of Pseudomonas putida on PES microfiltrationmembranes", J. Membrane Sci., 465, 27-33. https://doi.org/10.1016/j.memsci.2014.04.002
- Rosenberger, I., Strauss, A., Dobiasch, S., Weis, C., Szanyi, S., Gil-Iceta, L., Alonso, E., GonzalezEsparza, M., Gomez-Vallejo, V., Szczupak, B., Plaza-Garcia, S., Mirzaei, S., Israel, L.L., Bianchessi, S., Scanziani, E., Lellouche, J.P., Knoll, P., Werner, J., Felix, K., Grenacher, L., Rees, T., Kreuter, J. and Jimenez-Gonzalez, M. (2015), "Targeted diagnostic magnetic nanoparticles formed ical imaging of pancreaticcancer", J. Controll. Rel., 214, 76-84. https://doi.org/10.1016/j.jconrel.2015.07.017
- Sciancalepore, C., Rosa, R., Barrera, G., Tiberto, P., Allia, P. and Bondioli, F. (2014), "Microwave-assisted non aqueous sol-gel synthesis of highly crystalline magnetite nanocrystals", Mater. Chem. Phys., 148(1), 117-124. https://doi.org/10.1016/j.matchemphys.2014.07.020
- Shi, J., Yi, S., Long, C. and Li, A. (2015), "Effect of Fe loading quantity on reduction reactivity of nano zero-valent iron supported on chelating resin", Front. Environ. Sci. Eng., 9(5), 840-849. https://doi.org/10.1007/s11783-015-0781-2
- Sies, H. (1997), "Oxidative stress: oxidants and antioxidants", Exp. Physiol., 82(2), 291-295. https://doi.org/10.1113/expphysiol.1997.sp004024
- Simeonidis, K., Kaprar, E., Samaras, T., Angelakeris, M., Pliatsikas, N., Vourlias, G., Mitrakas, M. and Andritsos, N. (2015), "Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI)", Sci. Total Environ., 535, SI 61‐ 68.
- Sumin, K. and Lim, H.B. (2015), "Chem iluminescence immunoassay using magnetic nanoparticles with targeted inhibition for the determination of ochratoxin A", Talanta, 140, 183-188. https://doi.org/10.1016/j.talanta.2015.03.044
- Sun, Y.P., Li, X.Q., Cao, J., Zhang, W.X. and Wang, H.P. (2006), "Characterization of zero-valentiron nanoparticles", Adv. Colloid. Interf. Sci., 120, 47-56. https://doi.org/10.1016/j.cis.2006.03.001
- Suwal, S., Roblet, C., Amiot, J., Doyen, A., Beaulieu, L., Legault, J. and Bazinet, L. (2014), "Recovery of valuable peptides from marine protein hydrolysate by electrodialysis with ultrafiltration membrane:impact of ionic strength", Food Res. Int., 65, 407-415. https://doi.org/10.1016/j.foodres.2014.06.031
- Taurozzi, J.S., Arul, H., Bosak, V.Z., Burban, A.F., Voice, T.C., Bruening, M.L. and Tarabara, V.V. (2008), "Effect of filler incorporation route on the properties of polysulfone silver nanocomposite membranes of different porosities", J. Membr. Sci., 325, 58-68. https://doi.org/10.1016/j.memsci.2008.07.010
- Teja, A.S. and Koh, P.Y. (2009), "Synthesis, properties, and applications of magnetic iron oxide nanoparticles", Prog. Crystal Growth Character. Mater., 55, 22-45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003
- Tina, L., Pouliot, P., Avti, P.K., Lesage, F. and Kakkar, A.K. (2013), "Superparamagnetic iron oxide based nanoprobes for imaging and theranostics", Adv. Colloid Interf. Sci., 199-200, 95-113. https://doi.org/10.1016/j.cis.2013.06.007
- Toroghi, M., Raisi, A. and Aroujalian, A. (2014), "Preparation and characterization of polyethersulfone/silver nanocomposite ultrafiltration membrane for antibacterial applications", Polym. Adv. Technol., 25, 711-722. https://doi.org/10.1002/pat.3275
- Vatanpour, V., Madaeni, S.S., Rajabi, L., Zinadini, S. and Derakhshan, A.A. (2012), "Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes", J. Membrne Sci., 401-402, 132-143. https://doi.org/10.1016/j.memsci.2012.01.040
- Wang, C.B. and Zhang, W.X. (1997), "Synthesizing nanoscale iron particles for rapid and completed echlorination of TCE and PCBs", Environ. Sci. Technol., 31, 2154-2156. https://doi.org/10.1021/es970039c
- Weiming, H., Jun, Y., Baolin, D. and Zhiqang, H. (2015), "Application of nano TiO2 modified hollow fiber membranes in algal membrane bioreactors for high-density algae cultivation and wastewater polishing", Biores. Technol., 193, 135-141. https://doi.org/10.1016/j.biortech.2015.06.070
- Yan, W., Lien, H., Koel, B.E. and Zhang, W. (2013), "Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ", Sci. Proc. Impact., 15(1), 63-77. https://doi.org/10.1039/C2EM30691C
-
Yang, Y.X., Liu, M.L., Zhu, H., Chen, Y.R., Mu, G.J., Liu, X.N. and Jia, Y.Q. (2008), "Preparation, characterization, magnetic property, and mossbauer spectra of the
${\beta}$ -FeOOH nanoparticles modified by nonionic surfactant", J. Magnet. Magnet. Mater., 320(21), L132-L136. https://doi.org/10.1016/j.jmmm.2008.05.038 - Yao, Y., Miao, S., Liu, S., Ma, L.P., Sun, H. and Wang, S. (2012), "Synthesis, characterization, and adsorption properties of magnetic Fe3O4 graphene nanocomposite", Chem. Eng. J., 184, 326-332. https://doi.org/10.1016/j.cej.2011.12.017
-
Yu, L., Hao, G., Gu, J., Zhou, S., Zhang, N. and Jiang, W. (2015), "
$Fe_3O_4$ /PS magnetic nanoparticles:Synthesis, characterization and their application as sorbents of oil from wastewater", J. Magnet. Magnet. Mater., 394, 14-21. https://doi.org/10.1016/j.jmmm.2015.06.045 - Yu, R.F., Chen, H.W., Cheng, W.P., Lin, Y.J. and Huang, C.L. (2014), "Monitoring of ORP, pH and DO in heterogeneous Fenton oxidation using nZVI as a catalyst for the treatment of azo-dye textile wastewater", J. Taiwan Inst. Chem. Eng., 45(3), 947-954. https://doi.org/10.1016/j.jtice.2013.09.006
- Yurtsever, A., Sahinkaya, E., Aktas, O., Ucar, D., cinar, O. and Wang, Z. (2015), "Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater", Biores. Technol., 192, 564-573. https://doi.org/10.1016/j.biortech.2015.06.024
- Zodrow, K., Brunet, L., Mahendra, S., Li, D., Zhang, A., Li, Q. and Alvarez, P.J. (2009), "Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal", Water Res., 43(3), 715-723. https://doi.org/10.1016/j.watres.2008.11.014
피인용 문헌
- Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide vol.9, pp.6, 2017, https://doi.org/10.12989/mwt.2018.9.6.481
- Filtration and Antibacterial Properties of Bacterial Cellulose Membranes for Textile Wastewater Treatment vol.5, pp.2, 2017, https://doi.org/10.15171/ajehe.2018.14
- Water recovery from textile bath wastewater using combined subcritical water oxidation and nanofiltration vol.290, pp.None, 2021, https://doi.org/10.1016/j.jclepro.2020.125207
- Membrane concentrate management for textile wastewater with thermally activated persulfate oxidation method vol.35, pp.4, 2017, https://doi.org/10.1111/wej.12718
- Foulant layer degradation of dye in Photocatalytic Membrane Reactor (PMR) containing immobilized and suspended NH2-MIL125(Ti) MOF led to water flux recovery vol.10, pp.1, 2022, https://doi.org/10.1016/j.jece.2021.106999