DOI QR코드

DOI QR Code

Preparation, characterization and comparison of antibacterial property of polyethersulfone composite membrane containing zerovalent iron or magnetite nanoparticles

  • Dizge, Nadir (Department of Environmental Engineering, Mersin University) ;
  • Ozay, Yasin (Department of Environmental Engineering, Mersin University) ;
  • Simsek, U. Bulut (Department of Nanotechnology and Advanced Materials, Mersin University) ;
  • Gulsen, H. Elif (Department of Environmental Engineering, Mersin University) ;
  • Akarsu, Ceyhun (Department of Environmental Engineering, Mersin University) ;
  • Turabik, Meral (Department of Nanotechnology and Advanced Materials, Mersin University) ;
  • Unyayar, Ali (Department of Environmental Engineering, Mersin University) ;
  • Ocakoglu, Kasim (Department of Energy Systems Engineering, Mersin University)
  • 투고 : 2016.04.11
  • 심사 : 2016.10.15
  • 발행 : 2017.01.25

초록

Antimicrobial polyethersulfone ultrafiltration membranes containing zerovalent iron ($Fe^0$) and magnetite ($Fe_3O_4$) nanoparticles were synthesized via phase inversion method using polyethersulfone (PES) as membrane material and nano-iron as nanoparticle materials. Zerovalent iron nanoparticles (nZVI) were prepared by the reduction of iron ions with borohydride applying an inert atmosphere by using $N_2$ gases. The magnetite nanoparticles (nMag) were prepared via co-precipitation method by adding a base to an aqueous mixture of $Fe^{3+}$ and $Fe^{2+}$ salts. The synthesized nanoparticles were characterized by scanning electron microscopy, X-ray powder diffraction, and dynamic light scattering analysis. Moreover, the properties of the synthesized membranes were characterized by scanning electron microscopy energy dispersive X-ray spectroscopy and atomic force microscopy. The PES membranes containing the nZVI or nMag were examined for antimicrobial characteristics. Moreover, amount of iron run away from the PES composite membranes during the dead-end filtration were tested. The results showed that the permeation flux of the composite membranes was higher than the pristine PES membrane. The membranes containing nano-iron showed good antibacterial activity against gram-negative bacteria (Escherichia coli). The composite membranes can be successfully used for the domestic wastewater filtration to reduce membrane biofouling.

키워드

참고문헌

  1. Abhilash, M. (2010), "Potential applications of nanoparticles", Int. J. Pharma Bio Sci., 1(1), 1-12.
  2. Adams, C.F., Rai, A., Sneddon, G., Yiu, H.H., Polyak, B. and Chari, D.M. (2015), "Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations", Nanomed. Nanotech. Biology Med., 11(1), 19-29. https://doi.org/10.1016/j.nano.2014.07.001
  3. Ahmadi, R., Masoudi, A., Hosseini, H.R.M. and Gu, N. (2013), "Kinetics of magnetite nanoparticles formation in a one-step low temperature hydrothermal process", Ceram. Int., 39(5), 4999-5005. https://doi.org/10.1016/j.ceramint.2012.11.097
  4. Akar, N., Asar, B., Dizge, N. and Koyuncu, I. (2013), "Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles", J. Membrane Sci., 437, 216-226. https://doi.org/10.1016/j.memsci.2013.02.012
  5. Al-Hobaib, A.S., El Ghoul, J. and El Mir, L. (2015), "Synthesis and characterization of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles", Membrane Water Treat., 6(4), 309-321. https://doi.org/10.12989/mwt.2015.6.4.309
  6. Auffan, M., Achouak, W., Rose, J., Roncato, M., Chaneac, C., Waite, D.T., Masion, A., Woicik, J.C., Wiesner, M.R. and Bottero, J. (2008), "Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli", Environ. Sci. Technol., 42, 6730- 6735. https://doi.org/10.1021/es800086f
  7. Ayyappan, S., Philip, J. and Raj, B. (2009), "Solvent polarity effect on physical properties of CoFe2O3 nanoparticles", J. Phys. Chem. C, 113, 590-596. https://doi.org/10.1021/jp8083875
  8. Bani-Melhem, K., Al-Qodah, Z., Al-Shannag, M., Qasaimeh, A., Qtaishat, M.R. and Alkasrawi, M. (2015), "On the performance of real grey water treatment using a submerged membrane bioreactor system", J. Membrane Sci., 476, 40-49. https://doi.org/10.1016/j.memsci.2014.11.010
  9. Basri, H., Ismail, A.F. and Aziz, M. (2011), "Polyethersulfone (PES) ultrafiltration (UF) membranes loaded with silver nitrate for bacteria removal", Membrane Water Treat., 2(1), 25-37. https://doi.org/10.12989/mwt.2011.2.1.025
  10. Behera, S.S., Patra, J.K., Pramanik, K., Panda, N. and Thatoi, H. (2012), "Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles", World J. Nano Sci. Eng., 2, 196-200. https://doi.org/10.4236/wjnse.2012.24026
  11. Calderon, B. and Fullana, A. (2015), "Heavy metal release due to aging effect during zero valent iron nanoparticles remediation", Water Res., 83, 1-9. https://doi.org/10.1016/j.watres.2015.06.004
  12. Chen, L., Kong, W., Yao, J., Zhang, H., Gao, B., Li, Y., Bu, H., Chang, A. and Jiang, C. (2015), "Synthesis and characterization of Mn-Co-Ni-O ceramic nanoparticles by reverse micro emulsion method", Ceram. Int., 41(2), 2847-2851. https://doi.org/10.1016/j.ceramint.2014.10.106
  13. Chen, Y., Zhang, Y., Liu, J., Zhang, H. and Wang, K. (2012), "Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions", Chem. Eng. J., 210, 298-308. https://doi.org/10.1016/j.cej.2012.08.100
  14. Cheng, P., Huang, Z.G., Zhuang, Y., Fang, L.C., Huang, H., Deng, J., Jiang, L.L., Yu, K.K., Li, Y. and Zheng, J.S. (2014), "A novel regeneration-free E. coli O157:H7 amperometric immunosens or based on functionalised four-layer magnetic nanoparticles", Sens. Actuat. B: Chem., 204, 561-567. https://doi.org/10.1016/j.snb.2014.08.008
  15. Cho, D.W., Song, H., Schwartz, F.W., Kim, B. and Jeon, B.H. (2015), "The role of magnetite nanoparticles in the reduction of nitrate in ground water by zero-valent iron", Chemosp., 125, 41-49. https://doi.org/10.1016/j.chemosphere.2015.01.019
  16. Chrysochoou, M., Johnston, C.P. and Dahal, G.A. (2012), "Comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valentiron", J. Hazard Mater., 201, 33-42.
  17. Colombo, M., Carregal-Romero, S., Casula, M.F., Gutierrez, L., Morales, M.P., Bohm, I.B. and Parak, W.J. (2012), "Biological applications of magnetic nanoparticles", Chem. Soc. Rev., 41(11), 4306-4334. https://doi.org/10.1039/c2cs15337h
  18. Damodar, R.A., You, S.J. and Chou, H.H. (2009), "Study the self-cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes", J. Hazard. Mater., 172, 1321-1328. https://doi.org/10.1016/j.jhazmat.2009.07.139
  19. Dan, Z.G., Ni, H.W., Xu, B.F., Xiong, J. and Xiong, P.Y. (2005), "Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions", Thin Solid. Film., 492, 93-100. https://doi.org/10.1016/j.tsf.2005.06.100
  20. Fan, J., Guo, Y., Wang, J. and Fan, M. (2009), "Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zero valent iron particles", J. Hazard. Mater., 166(2), 904-910. https://doi.org/10.1016/j.jhazmat.2008.11.091
  21. Grass, R.N., Athanassiou, E.K. and Stark, W.J. (2007), "Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis", Angew. Chem. Int. Ed., 46(26), 4909-4912. https://doi.org/10.1002/anie.200700613
  22. Hufschmid, R., Arami, H., Ferguson, R.M., Gonzales, M., Teeman, E., Brush, L.N., Browning, N.D. and Krishnan, K.M. (2015), "Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition", Nanoscale, 7(25), 11142-11154. https://doi.org/10.1039/C5NR01651G
  23. Ikeda, S., Akamatsu, K., Nawafune, H., Nishino, T. and Deki, S. (2004), "Formation and growth of copper nanoparticles from ion-doped precurs or polyimide layers", J. Phys. Chem. B., 108, 15599-15607. https://doi.org/10.1021/jp0478559
  24. Iniyavan, P., Balaji, G.L., Sarveswari, S. and Vijayakumar, V. (2015), "CuO nanoparticles: synthesis and application as an efficient reusable catalyst for the preparation of xanthenesubstituted 1,2,3-triazoles via click chemistry", Tetrahedron Lett., 56(35), 5002-5009. https://doi.org/10.1016/j.tetlet.2015.07.016
  25. Iwahori, K., Watanabe, J.I., Tani, Y., Seyama, H. and Miyata, N. (2014), "Removal of heavy metal cations by biogenic magnetite nanoparticles produced in Fe (III)-reducing microbial enrichment cultures", J. Biosci. Bioeng., 117(3), 333-335. https://doi.org/10.1016/j.jbiosc.2013.08.013
  26. Jang, M.H., Lim, M. and Hwang, Y.S. (2014), "Potential environmental implications of nanoscale zerovalent iron particles for environmental remediation", Environ. Hlth. Toxicol., 29, 1-9. https://doi.org/10.1002/tox.20767
  27. Jarosova, B., Filip, J., Hilscherova, K., Tucek, J., Simek, Z., Giesy, J.P. and Blaha, L. (2015), "Can zerovalent iron nanoparticles remove water bornee strogens?", J. Environ. Manage., 150, 387-392. https://doi.org/10.1016/j.jenvman.2014.12.007
  28. Jian, X. (2007), "Synthesis and reactivity of membrane-supported bimetallic nanoparticles for pcb and trichloroethylene dechlorination", University of Kentucky Doctoral Dissertations, Paper 561.
  29. Karlsson, M.N.A., Deppert, K., Wacaser, B.A., Karlsson, L.S. and Malm, J.O. (2005), "Size-controlled nanoparticles by thermal cracking of iron pentacarbonyl", Appl. Phys. A Mater. Sci. Proc., 80, 1579-83. https://doi.org/10.1007/s00339-004-2987-1
  30. Karode, S.K., Gupta, B.B. and Courtois, T. (2000), "Ultrafiltration of raw Indian sugar solution using polymeric and mineral membranes", Sep. Sci. Technol., 35(15), 2473-2483. https://doi.org/10.1081/SS-100102350
  31. Khalil, M.I. (2015), "Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron (III) salts as precursors", Arab. J. Chem., 8(2), 279-284. https://doi.org/10.1016/j.arabjc.2015.02.008
  32. Kim, J.S., Kuk, E. and Yu, K.N. (2007), "Antimicrobial effects of silver nanoparticles, nanomedicine:nanotechnology", Biol. Med., 3(1), 95-101.
  33. Kim, K.H., Lee, J.S., Hong, H.P., Han, J.Y., Park, J.W. and Min, B.R. (2015), "The effect of Fullerene (C60) nanoparticles on the surface of PVDF composite membrane", Membrane Water Treat., 6(5), 423-437. https://doi.org/10.12989/mwt.2015.6.5.423
  34. Kumar, R., Sakthivel, R., Behura, R., Mishra, B.K. and Das, D. (2015), "Synthesis of magnetite nanoparticles from mineral waste", J. Alloy. Compound., 645, 398-404. https://doi.org/10.1016/j.jallcom.2015.05.089
  35. Lee, C., Kim, J.Y., Lee, W.I., Nelson, K.L., Yoon, J. and Sedlak, D.L. (2008), "Bactericidal effect of zerovalent iron nanoparticles on Escherichia coli", Environ. Sci. Tech., 42(13), 4927-4933. https://doi.org/10.1021/es800408u
  36. Lee, H.S., Im, S.J., Kim, J.H., Kim, H.J., Kim, J.P. and Min, B.R. (2008), "Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles", Desalination, 219(1-3), 48-56. https://doi.org/10.1016/j.desal.2007.06.003
  37. Lefevre, E., Bossa, N., Wiesner, M.R. and Gunsch C.K. (2016) "A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities", Sci. Total Environ., 565, 889-901. https://doi.org/10.1016/j.scitotenv.2016.02.003
  38. Li, J., Xu, Z., Yang, H., Yu, L. and Liu, M. (2009), "Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane", Appl. Surf. Sci., 255, 4725-4732. https://doi.org/10.1016/j.apsusc.2008.07.139
  39. Li, X.Q., Elliott, D.W. and Zhang, W.X. (2006), "Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects", Crit. Rev. Solid State Mater. Sci., 31(4), 111-122. https://doi.org/10.1080/10408430601057611
  40. Li, Z., Greden, K., Alvarez, P.J., Gregory, K.B. and Lowry, G.V. (2010), "Adsorbed polymer and NOM limits adhesion and toxicity of nanoscale zerovalent iron to E. coli", Environ. Sci. Technol., 44(9), 3462-3467. https://doi.org/10.1021/es9031198
  41. Liang, J., Du, N., Song, S. and Hou, W. (2015), "Magnetic demulsification of diluted crude oil-in-water nano emulsions using oleicacid-coated magnetite nanoparticles", Colloid. Surf. A: Phys. Chem. Eng. Aspect., 466, 197-202. https://doi.org/10.1016/j.colsurfa.2014.11.050
  42. Liu, P.C., Hsieh, J.H., Li, C., Chang, Y.K. and Yang, C.C. (2009), "Dissolution of Cu nanoparticles and antibacterial behaviors of TaN-Cu nanocomposite thin films", Thin Solid. Film., 517, 4956-4960. https://doi.org/10.1016/j.tsf.2009.03.109
  43. Ma, B., Yu, W., Jefferson, W.A., Liu, H. and Qu, J. (2015), "Modification of ultrafiltration membrane with nanoscale zerovalent iron layers for humic acid fouling reduction", Water Res., 15(71), 140-149.
  44. Machado, S., Pinto, S.L., Grosso, J.P., Nouws, H.P.A., Albergaria, J.T. and Delerue-Matos, C. (2013), "Green production of zero-valent iron nanoparticles using tree leaf extracts", Sci. Total Environ., 445, 1-8.
  45. Maity, D., Kale, S.N., Kaul-Ghanekar, R., Xue, J.M. and Ding, J. (2009), "Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri (ethyleneglycol)", J. Magnet. Magnet. Mater., 321(19), 3093-3098. https://doi.org/10.1016/j.jmmm.2009.05.020
  46. Mansoori, G.A., Bastami, T.R, Ahmadpour, A. and Eshaghi, Z. (2008), "Environmental application of nanotechnology", Ann. Rev. Nano Res., 2, Chap. 2.
  47. Moce-Llivina, L., Jofre, J. and Muniesa, M., (2003), "Comparison of polyvinylidene fluoride and polyether sulfone membranes in filtering viral suspensions", J. Virolog. Meth., 109(1), 99-101. https://doi.org/10.1016/S0166-0934(03)00046-6
  48. Nikalje, A.P. (2015), "Nanotechnology and its applications in medicine", Med. Chem., 5(2), 81-89.
  49. Ozdemir, G., Limoncu, M.H. and Yapar, S. (2010), "The antibacterial effect of heavy metal and cetylpridinium-exchanged montmorillonites", Appl. Clay Sci., 48, 319-323. https://doi.org/10.1016/j.clay.2010.01.001
  50. Pivin, J.C., Sendova-Vassileva, M., Lagarde, G., Singh, F. and Podhorodecki, A. (2006), "Optical activation of Eu3+ ions by Ag nanoparticles in ion exchanged silica-gel films", J. Phys. D: Appl. Phys., 39, 2955-2958. https://doi.org/10.1088/0022-3727/39/14/013
  51. Qiu, X., Fang, Z., Yan, X., Cheng, W. and Lin, K. (2013), "Chemical stability and toxicity of nanoscale zero-valent iron in the remediation of chromium contaminated watershed", Chem. Eng. J., 220, 61-66. https://doi.org/10.1016/j.cej.2012.11.041
  52. Rajabi, H., Ghaemi, N., Madaeni, S.S., Daraei, P., Astinchap, B., Zinadini, S. and Razavizadeh, S.H. (2015), "Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: Influence of nano filler shape on characterization and fouling resistance", Appl. Surf. Sci., 349, 66-77. https://doi.org/10.1016/j.apsusc.2015.04.214
  53. Rehan, Z.A., Gzara, L., Khan, S.B., Alamry, K.A., El-Shahawi, M.S., Albeirutty, M.H., Figoli, A., Drioli, E. and Asiri, A.M. (2016), "Synthesis and characterization of silver nanoparticles-filled polyethersulfone membranes for antibacterial and anti-biofouling application", Rec. Patent. Nanotech., 10(2), 1-21.
  54. Rosas, I., Collado, S., Gutierrez, A. and Diaz, M. (2014), "Foulingmechanisms of Pseudomonas putida on PES microfiltrationmembranes", J. Membrane Sci., 465, 27-33. https://doi.org/10.1016/j.memsci.2014.04.002
  55. Rosenberger, I., Strauss, A., Dobiasch, S., Weis, C., Szanyi, S., Gil-Iceta, L., Alonso, E., GonzalezEsparza, M., Gomez-Vallejo, V., Szczupak, B., Plaza-Garcia, S., Mirzaei, S., Israel, L.L., Bianchessi, S., Scanziani, E., Lellouche, J.P., Knoll, P., Werner, J., Felix, K., Grenacher, L., Rees, T., Kreuter, J. and Jimenez-Gonzalez, M. (2015), "Targeted diagnostic magnetic nanoparticles formed ical imaging of pancreaticcancer", J. Controll. Rel., 214, 76-84. https://doi.org/10.1016/j.jconrel.2015.07.017
  56. Sciancalepore, C., Rosa, R., Barrera, G., Tiberto, P., Allia, P. and Bondioli, F. (2014), "Microwave-assisted non aqueous sol-gel synthesis of highly crystalline magnetite nanocrystals", Mater. Chem. Phys., 148(1), 117-124. https://doi.org/10.1016/j.matchemphys.2014.07.020
  57. Shi, J., Yi, S., Long, C. and Li, A. (2015), "Effect of Fe loading quantity on reduction reactivity of nano zero-valent iron supported on chelating resin", Front. Environ. Sci. Eng., 9(5), 840-849. https://doi.org/10.1007/s11783-015-0781-2
  58. Sies, H. (1997), "Oxidative stress: oxidants and antioxidants", Exp. Physiol., 82(2), 291-295. https://doi.org/10.1113/expphysiol.1997.sp004024
  59. Simeonidis, K., Kaprar, E., Samaras, T., Angelakeris, M., Pliatsikas, N., Vourlias, G., Mitrakas, M. and Andritsos, N. (2015), "Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI)", Sci. Total Environ., 535, SI 61‐ 68.
  60. Sumin, K. and Lim, H.B. (2015), "Chem iluminescence immunoassay using magnetic nanoparticles with targeted inhibition for the determination of ochratoxin A", Talanta, 140, 183-188. https://doi.org/10.1016/j.talanta.2015.03.044
  61. Sun, Y.P., Li, X.Q., Cao, J., Zhang, W.X. and Wang, H.P. (2006), "Characterization of zero-valentiron nanoparticles", Adv. Colloid. Interf. Sci., 120, 47-56. https://doi.org/10.1016/j.cis.2006.03.001
  62. Suwal, S., Roblet, C., Amiot, J., Doyen, A., Beaulieu, L., Legault, J. and Bazinet, L. (2014), "Recovery of valuable peptides from marine protein hydrolysate by electrodialysis with ultrafiltration membrane:impact of ionic strength", Food Res. Int., 65, 407-415. https://doi.org/10.1016/j.foodres.2014.06.031
  63. Taurozzi, J.S., Arul, H., Bosak, V.Z., Burban, A.F., Voice, T.C., Bruening, M.L. and Tarabara, V.V. (2008), "Effect of filler incorporation route on the properties of polysulfone silver nanocomposite membranes of different porosities", J. Membr. Sci., 325, 58-68. https://doi.org/10.1016/j.memsci.2008.07.010
  64. Teja, A.S. and Koh, P.Y. (2009), "Synthesis, properties, and applications of magnetic iron oxide nanoparticles", Prog. Crystal Growth Character. Mater., 55, 22-45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003
  65. Tina, L., Pouliot, P., Avti, P.K., Lesage, F. and Kakkar, A.K. (2013), "Superparamagnetic iron oxide based nanoprobes for imaging and theranostics", Adv. Colloid Interf. Sci., 199-200, 95-113. https://doi.org/10.1016/j.cis.2013.06.007
  66. Toroghi, M., Raisi, A. and Aroujalian, A. (2014), "Preparation and characterization of polyethersulfone/silver nanocomposite ultrafiltration membrane for antibacterial applications", Polym. Adv. Technol., 25, 711-722. https://doi.org/10.1002/pat.3275
  67. Vatanpour, V., Madaeni, S.S., Rajabi, L., Zinadini, S. and Derakhshan, A.A. (2012), "Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes", J. Membrne Sci., 401-402, 132-143. https://doi.org/10.1016/j.memsci.2012.01.040
  68. Wang, C.B. and Zhang, W.X. (1997), "Synthesizing nanoscale iron particles for rapid and completed echlorination of TCE and PCBs", Environ. Sci. Technol., 31, 2154-2156. https://doi.org/10.1021/es970039c
  69. Weiming, H., Jun, Y., Baolin, D. and Zhiqang, H. (2015), "Application of nano TiO2 modified hollow fiber membranes in algal membrane bioreactors for high-density algae cultivation and wastewater polishing", Biores. Technol., 193, 135-141. https://doi.org/10.1016/j.biortech.2015.06.070
  70. Yan, W., Lien, H., Koel, B.E. and Zhang, W. (2013), "Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ", Sci. Proc. Impact., 15(1), 63-77. https://doi.org/10.1039/C2EM30691C
  71. Yang, Y.X., Liu, M.L., Zhu, H., Chen, Y.R., Mu, G.J., Liu, X.N. and Jia, Y.Q. (2008), "Preparation, characterization, magnetic property, and mossbauer spectra of the ${\beta}$-FeOOH nanoparticles modified by nonionic surfactant", J. Magnet. Magnet. Mater., 320(21), L132-L136. https://doi.org/10.1016/j.jmmm.2008.05.038
  72. Yao, Y., Miao, S., Liu, S., Ma, L.P., Sun, H. and Wang, S. (2012), "Synthesis, characterization, and adsorption properties of magnetic Fe3O4 graphene nanocomposite", Chem. Eng. J., 184, 326-332. https://doi.org/10.1016/j.cej.2011.12.017
  73. Yu, L., Hao, G., Gu, J., Zhou, S., Zhang, N. and Jiang, W. (2015), "$Fe_3O_4$/PS magnetic nanoparticles:Synthesis, characterization and their application as sorbents of oil from wastewater", J. Magnet. Magnet. Mater., 394, 14-21. https://doi.org/10.1016/j.jmmm.2015.06.045
  74. Yu, R.F., Chen, H.W., Cheng, W.P., Lin, Y.J. and Huang, C.L. (2014), "Monitoring of ORP, pH and DO in heterogeneous Fenton oxidation using nZVI as a catalyst for the treatment of azo-dye textile wastewater", J. Taiwan Inst. Chem. Eng., 45(3), 947-954. https://doi.org/10.1016/j.jtice.2013.09.006
  75. Yurtsever, A., Sahinkaya, E., Aktas, O., Ucar, D., cinar, O. and Wang, Z. (2015), "Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater", Biores. Technol., 192, 564-573. https://doi.org/10.1016/j.biortech.2015.06.024
  76. Zodrow, K., Brunet, L., Mahendra, S., Li, D., Zhang, A., Li, Q. and Alvarez, P.J. (2009), "Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal", Water Res., 43(3), 715-723. https://doi.org/10.1016/j.watres.2008.11.014

피인용 문헌

  1. Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide vol.9, pp.6, 2017, https://doi.org/10.12989/mwt.2018.9.6.481
  2. Filtration and Antibacterial Properties of Bacterial Cellulose Membranes for Textile Wastewater Treatment vol.5, pp.2, 2017, https://doi.org/10.15171/ajehe.2018.14
  3. Water recovery from textile bath wastewater using combined subcritical water oxidation and nanofiltration vol.290, pp.None, 2021, https://doi.org/10.1016/j.jclepro.2020.125207
  4. Membrane concentrate management for textile wastewater with thermally activated persulfate oxidation method vol.35, pp.4, 2017, https://doi.org/10.1111/wej.12718
  5. Foulant layer degradation of dye in Photocatalytic Membrane Reactor (PMR) containing immobilized and suspended NH2-MIL125(Ti) MOF led to water flux recovery vol.10, pp.1, 2022, https://doi.org/10.1016/j.jece.2021.106999