DOI QR코드

DOI QR Code

Performance improvement of countercurrent-flow membrane gas absorption in a hollow fiber gas-liquid membrane contactor

  • Ho, Chii-Dong (Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University) ;
  • Sung, Yun-Jen (Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University) ;
  • Chen, Wei-Ting (Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University) ;
  • Tsai, Feng-Chi (Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University)
  • Received : 2014.08.07
  • Accepted : 2016.10.04
  • Published : 2017.01.25

Abstract

The theoretical membrane gas absorption module treatments in a hollow fiber gas-liquid membrane contactor using Happel's free surface model were obtained under countercurrent-flow operations. The analytical solutions were obtained using the separated variable method with an orthogonal expansion technique extended in power series. The $CO_2$ concentration in the liquid absorbent, total absorption rate and absorption efficiency were calculated theoretically and experimentally with the liquid absorbent flow rate, gas feed flow rate and initial $CO_2$ concentration in the gas feed as parameters. The improvements in device performance under countercurrent-flow operations to increase the absorption efficiency in a carbon dioxide and nitrogen gas feed mixture using a pure water liquid absorbent were achieved and compared with those in the concurrent-flow operation. Both good qualitative and quantitative agreements were achieved between the experimental results and theoretical predictions for countercurrent flow in a hollow fiber gas-liquid membrane contactor with accuracy of $6.62{\times}10^{-2}{\leq}E{\leq}8.98{\times}10^{-2}$.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology of the Republic of China

References

  1. Al-Marzouqi, M.E., El-Nass, M.H., Mzrzouk, S.A.M., Al-Zarooni, M.A., Abdullatif, N. and Faiz, R. (2008), "Modeling of $CO_2$ absorption in membrane contactors", Sep. Purif. Technol., 59, 286-293. https://doi.org/10.1016/j.seppur.2007.06.020
  2. Bothuna, G.D., Knutsona, B.L., Strobelb, H.J., Nokesc, S.E., Brignoled, E.A. and Diazd, S. (2003), "Compresse solvents for the extraction of fermentation pro ucts within a hollow fiber membrane contactor", J. sSpercrit. Fluid., 25, 119-134. https://doi.org/10.1016/S0896-8446(02)00093-1
  3. Costello, M.J., Fane, A.G., Hogan, P.A. and Schofield, R.W. (1993), "The effect of shell side hydrodynamics on the performance of axial flow hollow fiber modules", J. Membr. Sci., 80, 1-11. https://doi.org/10.1016/0376-7388(93)85127-I
  4. Davis, E.J. and Venkatesh S. (1979), "The solution of conjugate multiphase heat an mass transfer problems, Chem. Eng. J., 34, 775-787. https://doi.org/10.1016/0009-2509(79)85133-7
  5. Dindore, V.Y., Brilman, D.W.F., Feron, P.H.M. and Versteeg G.F. (2004), "$CO_2$ absorption at elevated pressures using a hollow fiber membrane contactor", J. Membr. Sci., 235, 99-109. https://doi.org/10.1016/j.memsci.2003.12.029
  6. Gabelman, A. and Hwang, S.T. (1999), "Hollow Fiber Membrane Contactors", J. Membr. Sci., 159, 61-106. https://doi.org/10.1016/S0376-7388(99)00040-X
  7. Happel, J. (1959), "Viscous flow relative to arrays of cylinder", AIChE J., 5, 174-177. https://doi.org/10.1002/aic.690050211
  8. Ho, C.D., Sung, Y.J. and Chuang, Y.C. (2013), "An analytical study of laminar concurrent flow membrane absorption through a hollow fiber gas-liquid membrane contactor", J. Membr. Sci., 428, 232-240. https://doi.org/10.1016/j.memsci.2012.10.047
  9. Ho, C.D., Yeh, H.M. and Sheu W.S. (1998), "An analytical stu y of heat an mass transfer through a parallel-plate channel with recycle", Int. J. Heat Mass Transfer, 41, 2589-2599. https://doi.org/10.1016/S0017-9310(97)00337-2
  10. Karoor, S. and Sirkar, K.K. (1993), "Gas absorption studies in microporous hollow fiber membrane modules", Ind. Eng. Chem. Res., 32, 674-684. https://doi.org/10.1021/ie00016a014
  11. Kim, Y.S. and Yang, S.M. (2000), "Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents", Sep. Purif. Technol., 21, 101-109. https://doi.org/10.1016/S1383-5866(00)00195-7
  12. Kumar, P.S., Hogendoorn, J.A., Ferron, P.H.M. and Versteeg, G.F. (2002), "New absorption liquids for the removal of $CO_2$ from dilute gas streams using membrane contactos", Chem. Eng. Sci., 57, 1639-51. https://doi.org/10.1016/S0009-2509(02)00041-6
  13. Laouinia, A., Jaafar-Maaleja, C., Sfarb, S., Charcosseta, C. and Fessia, H. (2011), "Liposome preparation using a hollow fiber membrane contactor - Application to spironolactone encapsulation", Int. J. Pharm., 415, 53-61. https://doi.org/10.1016/j.ijpharm.2011.05.034
  14. Lee, Y., Noble, R.D., Yeom, B.Y., Park, Y.I. and Lee, K.H. (2001), "Analysis of $CO_2$ removal by hollow fiber membrane contactors", J. Membr. Sci., 194, 57-67. https://doi.org/10.1016/S0376-7388(01)00524-5
  15. Li, K. and Teo, W.K. (1998), "Use of permeation and absorption methods for $CO_2$ removal in hollow fiber membrane modules", Sep. Purif. Technol., 13, 79-88. https://doi.org/10.1016/S1383-5866(97)00059-2
  16. Li, R., Xu, J., Wang, L., Li, J. and Sun X. (2009), "Reduction of VOC emissions by a membrane-based gas absorption process", J. Envirn. Sci., 21, 1096-1102. https://doi.org/10.1016/S1001-0742(08)62387-6
  17. Mavroudi, M., Kaldis, S.P. and Sakellaropoulos, G.P. (2003), "Reduction of $CO_2$ emissions by a membrane contacting process", Fuel., 82, 2153-2159. https://doi.org/10.1016/S0016-2361(03)00154-6
  18. Nunge, R.J. and Gill, W.N. (1966), "An analytical study of laminar counterflow ouble-pipe heat exchangers", AIChE J., 12, 279-289. https://doi.org/10.1002/aic.690120214
  19. Papoutsakis, E. and Ramkrishna D. (1981), "Conjugate Graetz problems. i: general formalism and a class of solid-flui problems", Chem. Eng. Sci., 36, 1381-1390. https://doi.org/10.1016/0009-2509(81)80172-8
  20. Perelman, T.L. (1961), "On conjugate problems of heat transfer", Int. J. Heat Mass Transfer, 3, 293-303. https://doi.org/10.1016/0017-9310(61)90044-8
  21. Qi, Z. and Cussler E.L. (1985a), "Microporous hollow fibers for gas absorption: I. Mass transfer in the liquid", J. Membr. Sci., 23, 321-332. https://doi.org/10.1016/S0376-7388(00)83149-X
  22. Qi, Z. and Cussler E.L. (1985b), "Microporous hollow fibers for gas absorption: II. Mass transfer across the membrane", J. Membr. Sci., 23, 333-345. https://doi.org/10.1016/S0376-7388(00)83150-6
  23. Ramakula, P., Prapasawada, T., Pancharoena, U. and Pattaveekongkab, W. (2007), "Separation of ra ioactive metal ions by hollow fiber-supported liqui membrane an permeability analysis", J. Chin. Inst. Chem. Eng., 38, 489-494. https://doi.org/10.1016/j.jcice.2007.04.009
  24. Rezakazemi, M., Shirazian, S. and Ashrafizadeh S.N. (2012), "Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor", Desalination, 285, 383-392. https://doi.org/10.1016/j.desal.2011.10.030
  25. Varavuth, S., Jiraratananon, R. and Atchariyawut S. (2009), "Experimental study on ealcoholization of wine by osmotic istillation process", Sep. Purif. Technol., 66, 313-321. https://doi.org/10.1016/j.seppur.2008.12.011
  26. Versteeg, G.F. and van Swaaij, W.P.M. (1988), "Solubility and diffusivity of acid gases ($CO_2$, $N_2O$) in aqueous alkanolamine solutions", J. Chem. Eng. Data, 33, 29-34. https://doi.org/10.1021/je00051a011
  27. Wang, R., Zhang, H.Y., Feron, P.H.M. and Liang, D.T. (2005), "Influence of membrane wetting on $CO_2$ capture in microporous hollow fiber membrane contactors", Sep. Purif. Technol., 46, 33-40. https://doi.org/10.1016/j.seppur.2005.04.007
  28. Wang, W.P., Lin, H.T. and Ho, C.D. (2006), "An analytical study of laminar co-current flow gas absorption through a parallel-plate gas-liquid membrane contactor", J. Membr. Sci., 278, 181-189. https://doi.org/10.1016/j.memsci.2005.10.053
  29. Yang, M.C. and Cussler E.L. (1986), "Designing hollow-fiber contactor", AIChE J., 32, 1910-1915. https://doi.org/10.1002/aic.690321117
  30. Zhang, H.Y., Wang, R., Liang, D.T. and Tay, J.H. (2008), "Theoretical and experimental studies of membrane wetting in the membrane gas-liquid contacting process for $CO_2$ absorption", J. Membr. Sci., 194, 162-170.
  31. Zheng, J.M., Xu, Y.Y. and Xu, Z.K. (2003), "Shell side mass transfer characteristics in a parallel flow hollow fiber membrane modules", Sep. Sci. Tech., 6, 1247-1267.

Cited by

  1. Ultrafiltration treatment of wastewater contained heavy metals complexed with palygorskite vol.22, pp.4, 2020, https://doi.org/10.2478/pjct-2020-0031