DOI QR코드

DOI QR Code

ON STATISTICALLY SEQUENTIALLY QUOTIENT MAPS

  • Renukadevi, V. (Center for Research and Post Graduate Department of Mathematics Ayya Nadar Janaki Ammal College(Autonomous)) ;
  • Prakash, B. (Center for Research and Post Graduate Department of Mathematics Ayya Nadar Janaki Ammal College(Autonomous))
  • Received : 2016.11.03
  • Accepted : 2017.02.28
  • Published : 2017.03.30

Abstract

In this paper, we introduce the concept of statistically sequentially quotient map which is a generalization of sequence covering map and discuss the relation with covering maps by some examples. Using this concept, we give an affirmative answer for a question by Fucai Lin and Shou Lin.

Keywords

References

  1. B. Alleche, A. Arhangel'skii and J. Calbrix, Weak developments and metrization, Topology Appl. (2000), 23-38.
  2. A. Arhangel'skii, Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162.
  3. J. R. Boone and F. Siwiec, Sequentially quotient mappings, Czech. Math. J. 26 (1976), 174-182.
  4. G. Di Maio and Lj. D. R. Kocinac, Statistical convergence in topology, Topology Appl. 156 (2008), 28-45. https://doi.org/10.1016/j.topol.2008.01.015
  5. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
  6. S. P. Franklin, Spaces in which sequences suce, Fund. Math. 57 (1965), 107-115. https://doi.org/10.4064/fm-57-1-107-115
  7. Y. Ge, On sn-metrizable spaces, Acta Math. Sinica 45 (2002), 355-360(in chinese).
  8. G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (1984), 303-332. https://doi.org/10.2140/pjm.1984.113.303
  9. Z. Li, Images of locally compact metric spaces, Acta Math. Hungar. 99 (2003), 81-88. https://doi.org/10.1023/A:1024557328755
  10. J. Li, andS. Jiang, On sequence-covering K-mappings, Indian J. Pure Appl. Math. 34 (2003), 397-403.
  11. S. Lin, On sequence-covering s-maps, Adv. Math. (in Chinese) 25 (1996), 548-551.
  12. S. Lin, Point-countable covers and sequence-covering Mappings (in Chinese): Science Press, Beijing, 2002
  13. F. Lin and S. Lin, On Sequence-covering boundary compact maps of metric spaces, Adv. Math(China) 39(1) (2010), 71-78.
  14. F. Lin and S. Lin, Sequence-covering maps on generalized metric spaces, Houston J. Math. 40(3) (2014), 927-943.
  15. S. Lin and P. Yan, Sequence-covering maps of metric spaces, Topology Appl. 109 (2001), 301-314. https://doi.org/10.1016/S0166-8641(99)00163-7
  16. C. Liu and S. Lin, On countable-to-one maps, Topology Appl. 154 (2007), 449-454. https://doi.org/10.1016/j.topol.2006.06.002
  17. E. A. Michael and K. Nagami, Compact-covering images of metric spaces, Proc. Amer. Math. Soc. 37 (1973), 260-266. https://doi.org/10.1090/S0002-9939-1973-0307148-4
  18. I. M. Niven, H. S. Zuckerman and H.L. Montgomery, An introduction to the theory of numbers, John wiley and sons. inc., 1991
  19. I. J. Schoenberg, The Integrability of certain function and related summability methods, Amer. Math. Monthly 66 (1959), 361-375. https://doi.org/10.2307/2308747
  20. F. Siwiec, Sequence-covering and countably bi-quotient maps, General Topology Appl. 1 (1971), 143-154. https://doi.org/10.1016/0016-660X(71)90120-6
  21. V. V. Tkachuk, Monolithic spaces and D-spaces revisited, Topology Appl. 156 (2009), 840-846. https://doi.org/10.1016/j.topol.2008.11.001
  22. P. Yan, S. Lin and S. Jiang, Metrizability is preserved by closed sequence-covering maps, Acta Math. Sinica 47(1) (2004), 87-90.
  23. Z. Tang and F. Lin, Statistical versions of sequential and Frechet Urysohn spaces, Adv. Math. (china) 44 (2015), 945-954.