DOI QR코드

DOI QR Code

([r, s], [t, u])-INTERVAL-VALUED INTUITIONISTIC FUZZY GENERALIZED PRECONTINUOUS MAPPINGS

  • Park, Chun-Kee (Department of Mathematics Kangwon National University)
  • Received : 2016.11.16
  • Accepted : 2016.12.08
  • Published : 2017.03.30

Abstract

In this paper, we introduce the concepts of ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preclosed sets and ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preopen sets in the interval-valued intuitionistic smooth topological space and ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized pre-continuous mappings and then investigate some of their properties.

Keywords

References

  1. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1) (1986), 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  2. K. Atanassov and G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31 (3) (1989), 343-349. https://doi.org/10.1016/0165-0114(89)90205-4
  3. R. Badard, Smooth axiomatics, First IFSA Congress, Palma de Mallorca (July 1986).
  4. A. S. Bin Shahna, On fuzzy strong continuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991), 303-308. https://doi.org/10.1016/0165-0114(91)90013-G
  5. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190. https://doi.org/10.1016/0022-247X(68)90057-7
  6. K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of open- ness:fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242. https://doi.org/10.1016/0165-0114(92)90329-3
  7. D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89. https://doi.org/10.1016/S0165-0114(96)00076-0
  8. T. Fukutake, R. K. Saraf, M. Caldas and S. Mishra, Mappings via Fgp-closed sets, Bull. of Fukuoka Univ. of Edu. Vol. 52, Part III (2003), 11-20.
  9. R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems 45 (1992), 79-82. https://doi.org/10.1016/0165-0114(92)90093-J
  10. T. K. Mondal and S. K. Samanta, On intuitionistic gradation of openness, Fuzzy Sets and Systems 131 (2002), 323-336. https://doi.org/10.1016/S0165-0114(01)00235-4
  11. T. K. Mondal and S. K. Samanta, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math. 30 (1) (1999), 23-38.
  12. T. K. Mondal and S. K. Samanta, Topology of interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 119 (2001), 483-494. https://doi.org/10.1016/S0165-0114(98)00436-9
  13. C. K. Park, Interval-valued intuitionistic gradation of openness, Korean J. Math. 24 (1) (2016), 27-40. https://doi.org/10.11568/kjm.2016.24.1.27
  14. A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375. https://doi.org/10.1016/0165-0114(92)90352-5
  15. S. K. Samanta and T. K. Mondal, Intuitionistic gradation of openness: intuitionistic fuzzy topology, Busefal 73 (1997), 8-17.
  16. L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  17. L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, Inform. Sci. 8 (1975), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5

Cited by

  1. Interval-valued intuitionistic fuzzy parameterized interval-valued intuitionistic fuzzy soft sets and their application in decision-making vol.12, pp.1, 2017, https://doi.org/10.1007/s12652-020-02227-0