DOI QR코드

DOI QR Code

Anti-obesity Effect of Steamed Soybean and Fermented Steamed Soybean in High-fat Diet-induced Obese ICR Mice

  • Seo, Hye Rin (Department of Food Science and Nutrition, Pusan National University) ;
  • Lee, Ah Young (Department of Food Science and Nutrition, Pusan National University) ;
  • Cho, Kye Man (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Cho, Eun Ju (Department of Food Science and Nutrition, Pusan National University) ;
  • Kim, Hyun Young (Department of Food Science, Gyeongnam National University of Science and Technology)
  • Received : 2016.10.26
  • Accepted : 2017.01.23
  • Published : 2017.03.31

Abstract

This study was performed to investigate the ameliorating effects of steamed soybeans (SS) and fermented SS (FSS) on lipid metabolism in high-fat diet-induced obese mice. ICR mice were divided into four groups and given the following different diets: normal diet (ND), high-fat diet (HFD), HFD with 1% SS (HFD + SS), and HFD with 1% FSS (HFD + FSS). After 14 weeks, the body weight gain was higher in the HFD group compared with the ND group but lower in the HFD + FSS group compared with the HFD group. Plasma levels of triglyceride (TG), total cholesterol (TC), low density lipoprotein-cholesterol, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were significantly higher in the HFD group compared to the ND group, but lower in the HFD + SS and HFD + FSS groups compared with the HFD group. In addition, leptin concentration in plasma was lower in the groups fed HFD + SS and HFD + FSS compared with the HFD group. The accumulation of hepatic TG and TC was significantly inhibited in the HFD + SS and HFD + FSS groups. Furthermore, SS and FSS attenuated lipid peroxidation and nitric oxide formation in the liver induced by the high-fat diet. These results suggest that soybeans, especially FSS, may be useful in preventing obesity-induced abnormalities in lipid metabolism.

Keywords

References

  1. Bae, C. R.; Kwon, D. Y.; Cha, Y. S. J. Clin. Biochem. Nutr. 2014, 54, 45-50. https://doi.org/10.3164/jcbn.13-52
  2. de Almeida, M. M.; de Souza, Y. O.; Dutra Luquetti, S. C.; Sabarense, C. M.; do Amaral Correa, J. O.; da Conceicao, E. P.; Lisboa, P. C.; de Moura, E. G., Andrade Soares, S. M.; Moura Gualberto, A. C.; Gameiro, J.; da Gama, M. A.; Ferraz Lopes, F. C.; Gonzalez Garcia, R. M. J. Oleo. Sci. 2015, 64, 539-551. https://doi.org/10.5650/jos.ess14222
  3. Larsson, B.; Bjorntorp, P.; Tibblin, G. Int. J. Obes. 1981, 5, 97-116.
  4. Amo, K.; Arai, H.; Uebanso, T.; Fukaya, M.; Koganei, M.; Sasaki, H.; Yamamoto, H.; Taketani, Y.; Takeda, E. J. Clin. Biochem. Nutr. 2011, 49, 1-7. https://doi.org/10.3164/jcbn.10-111
  5. Reaven, G. M. Curr. Atheroscler. Rep. 2000, 2, 503-507. https://doi.org/10.1007/s11883-000-0050-z
  6. Lei, F.; Zhang, X. N.; Wang, W.; Xing, D. M.; Xie, W. D.; Su, H.; Du, L. J. Int. J. Obes. 2007, 31, 1023-1029. https://doi.org/10.1038/sj.ijo.0803502
  7. Ikeuchi, M.; Koyama, T.; Takahashi, J.; Yazawa, K. Biosci. Biotechnol. Biochem. 2007, 71, 893-899. https://doi.org/10.1271/bbb.60521
  8. Lee, Y. S.; Choi, B. K.; Lee, H. J.; Lee, D. R.; Cheng, J.; Lee, W. K.; Yang, S. H.; Suh, J. W. Asian Pac. J. Trop. Med. 2015, 8, 276-282. https://doi.org/10.1016/S1995-7645(14)60330-8
  9. Mateos-Aparicio, I.; Redondo-Cuenca, A.; Villanueva-Suarez, M. J.; Zapata-Revilla, M. A. 2008, Nutr. Hosp. 23, 305-312.
  10. Liu, K. S. In Soybeans: Chemistry, Technology and Utilization; Chapman and Hall, New York, 1997, pp 442-447.
  11. Craig, W. J. J. Am. Diet. Assoc. 1997, 97, S199-S204. https://doi.org/10.1016/S0002-8223(97)00765-7
  12. Kwon, D. Y.; Daily, J. W. 3rd.; Kim, H. J.; Park, S. Nutr. Res. 2010, 30, 1-13. https://doi.org/10.1016/j.nutres.2009.11.004
  13. Cha, Y. S.; Kim, S. R.; Yang, J. A.; Back, H. I.; Kim, M. G.; Jung, S. J.; Song, W. O.; Chae, S. W. Nutr. Metab. 2013, 10, 24. https://doi.org/10.1186/1743-7075-10-24
  14. Yoo, K. M. Korean J. Food Nutr. 2011, 24, 451-457. https://doi.org/10.9799/ksfan.2011.24.3.451
  15. Choi, M.; Cho, K.; Nam, S. J. Korean Soc. Food Sci. Nutr. 2014, 43, 243-249. https://doi.org/10.3746/jkfn.2014.43.2.243
  16. Folch, J.; Lees, M.; Stanley Stanley, G. H. J. Biol. Chem. 1957, 226, 497-509.
  17. Uchiyama, M.; Mihara, M. Anal. Biochem. 1978, 86, 271-278. https://doi.org/10.1016/0003-2697(78)90342-1
  18. Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Sensors 2003, 3, 276-284. https://doi.org/10.3390/s30800276
  19. Elmarakby, A. A.; Sullivan, J. C. Cardiovasc. Ther. 2012, 30, 49-59. https://doi.org/10.1111/j.1755-5922.2010.00218.x
  20. Bondia-Pons, I.; Ryan, L.; Martinez, J. A. J. Physiol. Biochem. 2012, 4, 701-711.
  21. Hill, J. O.; Catenacci, V.; Wyatt, H. R. Psychiatr. Clin. North Am. 2005, 28, 1-23. https://doi.org/10.1016/j.psc.2004.09.010
  22. American Medical Association 2013. American Medical Association: AMA adopt new policies on second day of voting at Annual Meeting (obesity as a disease); Marketwired: 2013.
  23. Kim, B.; Lee, B. W.; Hwang, C. E.; Lee, Y. Y.; Lee, C.; Kim, B. J.; Park, J. Y.; Sim, E. Y.; Haque, M. A.; Lee, D. H.; Lee, J. H.; Ahn, M, J.; Lee, H. Y.; Ko, J. M.; Kim, H. T.; Cho, K. M. Kor. J. Microbiol. 2015, 51, 231-240. https://doi.org/10.7845/kjm.2015.5045
  24. Abete, N. American Journal of Medicine 1999, 107, 125-135.
  25. Rader, D. J.; Hovingh, G. K. Lancet 2014, 384, 618-625. https://doi.org/10.1016/S0140-6736(14)61217-4
  26. Siebel, A. L.; Heywood, S. E.; Kingwell, B. A. Front. Pharmacol. 2015, 6, 258.
  27. Kahn, B. B.; Flier, J. S. J. Clin. Invest. 2000, 106, 473-481. https://doi.org/10.1172/JCI10842
  28. Lin, S.; Thomas, T. C.; Storlien, L. H.; Huang, X. F. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 639-646. https://doi.org/10.1038/sj.ijo.0801209
  29. Cano, P. G.; Santacruz, A.; Trejo, F. M.; Sanz, Y. Obesity 2013, 21, 2310-2321. https://doi.org/10.1002/oby.20330
  30. Xu, Y.; Zhang, M.; Wu, T.; Dai, S.; Xu, J.; Zhou, Z. Food Funct. 2015, 6, 297-304.
  31. Unger, R. H.; Zhou, Y. T.; Orci, L. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 2327-2332. https://doi.org/10.1073/pnas.96.5.2327
  32. Van Steenbergen, W.; Lanckmans, S. Int. J. Obes. Relat. Metab. Disord. 1995, 19, S27-S36.
  33. Cohen, B.; Novick, D.; Rubinstein, M. Science 1996, 274, 1185-1188. https://doi.org/10.1126/science.274.5290.1185
  34. Chitturi, S.; Farrell, G.; Frost, L.; Kriketos, A.; Lin, R.; Fung, C.; Liddle, C.; Samarasinghe, D.; George, J. Hepatology 2002, 36, 403-409. https://doi.org/10.1053/jhep.2002.34738
  35. Sallie, R.; Tredger, J. M.; William, R. Biopharm. Drug Dispos. 1991, 12, 251-259. https://doi.org/10.1002/bdd.2510120403
  36. Yu, X. X.; Murray, S. F.; Pandey, S. K.; Booten, S. L.; Bao, D.; Song, X. Z.; Kelly, S.; Chen, S.; McKay, R.; Monia, B. P.; Bhanot, S. Hepatology 2005, 42,362-371. https://doi.org/10.1002/hep.20783
  37. Fernandez-Sanchez, A.; Madrigal-Santillan, E.; Bautista, M.; Esquivel-Soto, J.; Morales-Gonzalez, A.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sanchez-Rivera, G.; Valadez-Vega, C.; Morales-Gonzalez, J. A. Int. J. Mol. Sci. 2011, 12, 3117-3132. https://doi.org/10.3390/ijms12053117
  38. Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Makishima, M.; Matsuda, M.; Shimomura, I. J. Clin. Invest. 2004, 114, 1752-1761. https://doi.org/10.1172/JCI21625
  39. Milagro, F. I.; Campion, J.; Martinez, J. A. Obesity 2006, 14, 1118-1123. https://doi.org/10.1038/oby.2006.128
  40. Oliveira. C. P.; Coelho, A. M.; Barbeiro, H. V.; Lima, V. M.; Soriano, F.; Ribeiro, C.; Molan, N. A.; Alves, V. A.; Souza, H. P.; Machado, M. C.; Carrilho, F. J. Braz. J. Med. Biol. Res. 2006, 39, 189-194. https://doi.org/10.1590/S0100-879X2006000200004
  41. Vincent, H. K.; Taylor, A. G. Int. J. Obes. 2006, 30, 400-418. https://doi.org/10.1038/sj.ijo.0803177
  42. Katsube, T.; Tamasaki, M.; Shiwaku, K.; Ishijima, T.; Matsumoto, I.; Abe, K.; Yamasaki, Y. J. Sci. Food Agric. 2010, 90, 2386-2392. https://doi.org/10.1002/jsfa.4096
  43. Jung, C. H.; Cho, I.; Ahn, J.; Jeon, T. I.; Ha, T. Y. Phytother. Res. 2013, 27, 139-143. https://doi.org/10.1002/ptr.4687
  44. Rege, S. D.; Kumar, S.; Wilson, D. N.; Tamura, L.; Geetha, T.; Mathews, S. T.; Huggins, K. W.; Broderick, T. L.; Babu, J. R. Oxid. Med. Cell. Longev. 2013, 2013, 1-7.
  45. Ha, S. K.; Chae, C. Exp. Anim. 2010, 59, 595-604. https://doi.org/10.1538/expanim.59.595
  46. Suzuki, Y.; Kosaka, M.; Shindo, K.; Kawasumi, T.; Kimoto-Nira, H.; Suzuki, C. Biosci. Biotechnol. Biochem. 2013, 77, 1299-1302. https://doi.org/10.1271/bbb.121006
  47. Hwang, C. E.; An, M. J.; Lee, H. Y.; Lee, B. W.; Kim, H. Y.; Ko, J. M.; Baek, I. Y.; Seo, W. T.; Cho, K. M. Korean J. Food Sci. Technol. 2014, 46, 556-565. https://doi.org/10.9721/KJFST.2014.46.5.556
  48. Izumi, T.; Piskula, M. K.; Osawa, S.; Obata, A.; Tobe, K.; Saito, M.; Kataoka, S.; Kikuchi, M. J. Nutr. 2000, 130, 1695-1699. https://doi.org/10.1093/jn/130.7.1695
  49. Choi, I.; Kim, Y.; Park, Y.; Seog, H.; Choi, H. Bio Factors 2007, 29, 105-112.
  50. Terpstra, A. H.; Javadi, M.; Beynen, A. C.; Kocsis, S.; Lankhorst, A. E.; Lemmens, A. G.; Mohede, I. C. J. Nutr. 2003, 133, 3181-3186. https://doi.org/10.1093/jn/133.10.3181