DOI QR코드

DOI QR Code

Diarylbutane-type Lignans from Myristica fragrans (Nutmeg) show the Cytotoxicity against Breast Cancer Cells through Activation of AMP-activated Protein Kinase

  • Le, Thi Van Thu (College of Pharmacy, Chosun University) ;
  • Nguyen, Phi Hung (College of Pharmacy, Chosun University) ;
  • Choi, Hong Seok (College of Pharmacy, Chosun University) ;
  • Yang, Jun-Li (Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Kang, Keon Wook (Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Ahn, Sang-Gun (Department of Pathology, College of Dentistry, Chosun University) ;
  • Oh, Won Keun (Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University)
  • Received : 2016.09.10
  • Accepted : 2016.11.18
  • Published : 2017.03.31

Abstract

In our program to search for new AMP-activated protein kinase (AMPK) activators from plants that exert potential anticancer property, we found that an EtOAc extract of Myristica fragrans (nutmeg) activated AMPK enzyme in human breast cancer MCF-7 cells. Two major diarylbutane-type lignans, macelignan and meso-dihydroguaiaretic acid (MDGA), were isolated as active principles from this extract. Treatment of breast cancer cells with two compounds induced cellular apoptosis, evidenced by cleavage of poly-(ADP-ribose) polymerase (PARP) and Ser 15 phosphorylation of p53. Moreover, macelignan and MDGA significantly inhibited the colony formation of MCF-7 breast cancer cells on soft agar. Intraperitoneal injection of macelignan and MDGA (20 mg/kg) suppressed the tumor growth of 4T1 mammary cancer cells. These results indicate that the chemopreventive effects of two major diarylbutane-type lignans from Myristica fragrans (nutmeg) may be associated with induction of apoptosis presumably through AMPK activation.

Keywords

References

  1. Evans, D. G. R.; Howell, A. Breast Cancer Res. 2007, 9, 213-220. https://doi.org/10.1186/bcr1750
  2. Zhou, W.; Guan, X.; Wang, L.; Liao, Y.; Huang, J. J. Cancer Res. Clin. Oncol. 2012, 138, 2085-2093. https://doi.org/10.1007/s00432-012-1286-z
  3. Nagalingam, A.; Arbiser, J. L.; Bonner, M. Y.; Saxena, N. K.; Sharma, D. Breast Cancer Res. 2012, 14, 35-50.
  4. Guppy, A.; Jamal-Hanjani, M.; Pickering, L. Future Oncol. 2011. 7, 727-736. https://doi.org/10.2217/fon.11.49
  5. Li, B. X.; Yamanaka, K.; Xiao, X. Bioorg. Med. Chem. 2012, 20, 6811-6820. https://doi.org/10.1016/j.bmc.2012.09.056
  6. Fortes, C.; Forastiere, F.; Farchi, S.; Mallone, S.; Trequattrinni, T.; Anatra, F.; Schmid, G.; Perucci, C. A. Nutr. Cancer 2003, 46, 30-37. https://doi.org/10.1207/S15327914NC4601_04
  7. Tran, T. P.; Kim, H. G.; Choi, J. H.; Na, M. K.; Jeong, H. G. Phytomedicine 2013, 20, 622-631. https://doi.org/10.1016/j.phymed.2013.01.014
  8. Nguyen, H. B.; Babcock, J. T.; Wells, C. D.; Quilliam, L. A. Oncogene 2013, 32, 4100-4109. https://doi.org/10.1038/onc.2012.431
  9. Hadad, S. M.; Baker, L.; Quinlan, P. R.; Robertson, K. E.; Bray, S. E.; Thomson, G.; Kellock, D.; Jordan, L. B.; Purdie, C. A.; Hardie, D. G.; Fleming, S.; Thompson, A. M. BMC Cancer 2009, 9, 307-315. https://doi.org/10.1186/1471-2407-9-307
  10. Lee, K. E.; Mun, S.; Pyun, H. B.; Kim, M. S.; Hwang, J. K. Biol. Pharm. Bull. 2012, 35, 1669-1675. https://doi.org/10.1248/bpb.b12-00037
  11. Pan, J. Y.; Chen, S. L.; Yang, M. H.; Wu, J.; Sinkkonen, J.; Zou, K. Nat. Prod. Rep. 2009, 26, 1251-1292. https://doi.org/10.1039/b910940d
  12. Nguyen, P. H.; Le, T. V. T.; Kang, H. W.; Chae, J.; Kim, S. K.; Kwon, K. I.; Seo, D. B.; Lee, S. J.; Oh, W. K. Bioorg. Med. Chem. Lett. 2010, 20, 4128-4131. https://doi.org/10.1016/j.bmcl.2010.05.067
  13. Woo, W. S.; Shin, K. H.; Wagner, H.; Lotter, H. Phytochemistry 1987, 26, 1542-1543. https://doi.org/10.1016/S0031-9422(00)81858-0
  14. Nakatani, N.; Ikeda, K.; Kikuzaki, H.; Kido, M.; Yamaguchi, Y. Phytochemistry 1988, 27, 3127-3129. https://doi.org/10.1016/0031-9422(88)80013-X
  15. Hashimura, T.; Yoshida, O. Jpn. J. Cancer Res. 1985, 76, 321-323.
  16. Li, Q.; Ling, Y.; Yu, L. J. Cancer Res. Clin. Oncol. 2012, 138, 1073-1079. https://doi.org/10.1007/s00432-012-1213-3
  17. Zhang, X.; Zhang, S.; Liu, Y.; Liu, J.; Ma, Y.; Zhu, Y.; Zhang J. Eur. J. Cancer 2012, 48, 1581-1592. https://doi.org/10.1016/j.ejca.2012.02.053
  18. Dumaz, N.; Meek, D. W. EMBO J. 1999, 18, 7002-7010. https://doi.org/10.1093/emboj/18.24.7002
  19. Hardie, D. G. Curr. Opin. Cell Biol. 2005, 17, 167-173. https://doi.org/10.1016/j.ceb.2005.01.006
  20. Kim, M. S.; Park, J. Y.; Namkoong, C.; Jang, P. G.; Ryu, J. W.; Song, H. S.; Yun, J. Y.; Namgoong, I. S.; Ha, J.; Park, I. S.; Lee, I. K.; Viollet, B.; Youn, J. H.; Lee, H. K.; Lee, K. U. Nat. Med. 2004, 10, 727-733. https://doi.org/10.1038/nm1061
  21. Atherton, P. J.; Babraj, J.; Smith, K.; Singh, J.; Rennie, M. J.; Wackerhage, H. FASEB J. 2005, 19, 786-788. https://doi.org/10.1096/fj.04-2179fje
  22. Lee, D. H.; Lee, T. H.; Jung, C. H.; Kim, Y. H. Cell. Signal. 2012, 24, 2216-2225. https://doi.org/10.1016/j.cellsig.2012.07.019
  23. Choi, E. J.; Kang, Y. G.; Kim, J.; Hwang, J. K. Biol. Pharm. Bull. 2011, 34, 748-754. https://doi.org/10.1248/bpb.34.748

Cited by

  1. Lactones from the pericarps of Litsea japonica and their anti-inflammatory activities vol.28, pp.11, 2017, https://doi.org/10.1016/j.bmcl.2018.04.023
  2. The Inhibitory Effect of Cordycepin on the Proliferation of MCF-7 Breast Cancer Cells, and Its Mechanism: An Investigation Using Network Pharmacology-Based Analysis vol.9, pp.9, 2017, https://doi.org/10.3390/biom9090414
  3. The Protective Effect of Myristica fragrans Houtt. Extracts Against Obesity and Inflammation by Regulating Free Fatty Acids Metabolism in Nonalcoholic Fatty Liver Disease vol.12, pp.9, 2017, https://doi.org/10.3390/nu12092507
  4. Lignans from Machilus thunbergii as Thymic Stromal Lymphopoietin Inhibitors vol.26, pp.16, 2017, https://doi.org/10.3390/molecules26164804