DOI QR코드

DOI QR Code

Effect of Cryptochlorogenic Acid Extracted from Fruits of Sorbus commixta on Osteoblast Differentiation

마가목 열매에서 추출한 Cryptochlorogenic Acid 처리에 의한 조골세포 분화 촉진 효능

  • Received : 2016.09.30
  • Accepted : 2017.01.13
  • Published : 2017.03.31

Abstract

Chlorogenic acid, a well-known polyphenol, and its derivatives, ester of caffeic acid on quinic acid moiety, are abundant in coffee, tea, fruits, and various vegetables. This study examined the effects of cryptochlorogenic acid (CCA) on osteoblast differentiation. CCA-induced mRNA expression levels of osteogenic genes in MC3T3E1 and C3H10T1/2 cells were determined by RT-PCR and qPCR. CCA regulated expression of key osteogenic genes in the early stage of differentiation, including distal-less homeobox 5 (Dlx5), DNA-binding protein inhibitor (Id1), and runt-related transcription factor 2 (Runx2). These results suggest that CCA may enhance osteoblast differentiation through expression of osteogenic genes such as Id1, Dlx5, and Runx2, especially in the early stage.

본 연구에서는 마가목 열매에서 추출한 chlorogenic acid의 유사체인 cryptochlorogenic acid(CCA)가 조골세포 분화에 미치는 영향에 대해서 알아보았다. 먼저 세포독성 여부를 확인하기 위해 MTT assay를 수행하였고 독성이 없다고 확인된 $5{\mu}M$의 농도에서 실험을 진행하였다. 그리고 조골세포로 분화할 수 있는 다분화능 세포인 C3H10T1/2와 조골세포인 MC3T3-E1에 CCA를 처리하여 표지 유전자인 Id1, Dlx5, Runx2의 발현을 확인하였다. 확인한 결과 표지유전자들의 발현이 대조군에 비교해서 증가한 것을 확인하였고, 그중 조골세포의 핵심 전사조절인자인 Runx2의 전사활성에 미치는 영향을 알아보기 위해 promoter assay를 수행하여 Runx2의 전사활성이 증가하는 것을 재확인하였다. 이러한 결과들을 토대로 CCA는 조골세포 분화를 촉진한다는 것을 알게 되었고, 골 질환 관련 제제로 CCA가 이용 가능할 수 있다고 생각된다.

Keywords

References

  1. Seo J, Hwang ES, Kim GH. 2011. Antioxidative and differentiation effects of Artemisia capillaris T. extract on hydrogen peroxide-induced oxidative damage of MC3T3-E1 osteoblast cells. J Korean Soc Food Sci Nutr 40: 1532-1536. https://doi.org/10.3746/jkfn.2011.40.11.1532
  2. Kim MJ, Im NK, Yu MH, Kim HJ, Lee IS. 2011. Effects of extracts from sarcocarp, peels, and seeds of avocado on osteoblast differentiation and osteoclast formation. J Korean Soc Food Sci Nutr 40: 919-927. https://doi.org/10.3746/jkfn.2011.40.7.919
  3. Shin JM, Park CK, Shin EJ, Jo TH, Hwang IK. 2008. Effects of Scutellaria radix extract on osteoblast differentiation and osteoclast formation. Korean J Food Sci Technol 40: 674-679.
  4. Canalis E. 1985. Effect of growth factors on bone cell replication and differentiation. Clin Orthop Relat Res 193: 246-263.
  5. Canalis E, McCarthy T, Centrella M. 1988. Growth factors and the regulation of bone remodeling. J Clin Invest 81: 277-281. https://doi.org/10.1172/JCI113318
  6. Chen C, Qin Y, Fang JP, Ni XY, Yao J, Wang HY, Ding K. 2015. WSS25, a sulfated polysaccharide, inhibits RANKLinduced mouse osteoclast formation by blocking SMAD/ID1 signaling. Acta Pharmacol Sin 36: 1053-1064. https://doi.org/10.1038/aps.2015.65
  7. Yamaguchi A, Komori T, Suda T. 2000. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev 21: 393-411. https://doi.org/10.1210/edrv.21.4.0403
  8. Franceschi RT, Ge C, Xiao G, Roca H, Jiang D. 2007. Transcriptional regulation of osteoblasts. Ann N Y Acad Sci 1116: 196-207. https://doi.org/10.1196/annals.1402.081
  9. de Jong DS, Vaes BL, Dechering KJ, Feijen A, Hendriks JM, Wehrens R, Mummery CL, van Zoelen EJ, Olijve W, Steegenga WT. 2004. Identification of novel regulators associated with early-phase osteoblast differentiation. J Bone Miner Res 19: 947-958. https://doi.org/10.1359/JBMR.040216
  10. Herrmann K. 1989. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28: 315-347. https://doi.org/10.1080/10408398909527504
  11. Hu YJ, Chen CH, Zhou S, Bai AM, Ou-Yang Y. 2012. The specific binding of chlorogenic acid to human serum albumin. Mol Biol Rep 39: 2781-2787. https://doi.org/10.1007/s11033-011-1036-3
  12. Nakatani N, Kayano S, Kikuzaki H, Sumino K, Katagiri K, Mitani T. 2000. Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L.). J Agric Food Chem 48: 5512-5516. https://doi.org/10.1021/jf000422s
  13. Mullen W, Nemzer B, Ou B, Stalmach A, Hunter J, Clifford MN, Combet E. 2011. The antioxidant and chlorogenic acid profiles of whole coffee fruits are influenced by the extraction procedures. J Agric Food Chem 59: 3754-3762. https://doi.org/10.1021/jf200122m
  14. Seo CS, Lim HS, Jeong SJ, Ha H, Shin HK. 2013. HPLCPDA analysis and anti-inflammatory effects of Mori Cortex Radicis. Nat Prod Commun 8: 1443-1446.
  15. Pols HA, Felsenberg D, Hanley DA, Stepan J, Munoz-Torres M, Wilkin TJ, Qin-sheng G, Galich AM, Vandormael K, Yates AJ, Stych B. 1999. Multinational, placebo-controlled, randomized trial of the effects of alendronate on bone density and fracture risk in postmenopausal women with low bone mass: results of the FOSIT study. Fosamax International Trial Study Group. Osteoporos Int 9: 461-468. https://doi.org/10.1007/PL00004171
  16. Centrella M, McCarthy TL, Canalis E. 1987. Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J Biol Chem 262: 2869-2874.
  17. Letton RW, Fanti P, Malluche HH. 1990. Regulation of 25-hydroxyvitamin D3 metabolism in cultures of osteoblastic cells. J Bone Miner Res 5: 815-823.
  18. Yin T, Li L. 2006. The stem cell niches in bone. J Clin Invest 116: 1195-1201. https://doi.org/10.1172/JCI28568
  19. Cohen MM Jr. 2002. Bone morphogenetic proteins with some comments on fibrodysplasia ossificans progressiva and NOGGIN. Am J Med Genet 109: 87-92. https://doi.org/10.1002/ajmg.10289
  20. Bodine PV, Zhao W, Kharode YP, Bex FJ, Lambert AJ, Goad MB, Gaur T, Stein GS, Lian JB, Komm BS. 2004. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol 18: 1222-1237. https://doi.org/10.1210/me.2003-0498
  21. Baron R, Rawadi G, Roman-Roman S. 2006. Wnt signaling: a key regulator of bone mass. Curr Top Dev Biol 76: 103-127.
  22. Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F. 2005. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132: 49-60.
  23. Peng Y, Kang Q, Luo Q, Jiang W, Si W, Liu BA, Luu HH, Park JK, Li X, Luo J, Montag AG, Haydon RC, He TC. 2004. Inhibitor of DNA binding/differentiation helix-loophelix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells. J Biol Chem 279: 32941-32949. https://doi.org/10.1074/jbc.M403344200
  24. Maeda Y, Tsuji K, Nifuji A, Noda M. 2004. Inhibitory helix-loop-helix transcription factors Id1/Id3 promote bone formation in vivo. J Cell Biochem 93: 337-344. https://doi.org/10.1002/jcb.20154
  25. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T. 1994. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 27: 1755-1766.
  26. Lee MH, Kim YJ, Yoon WJ, Kim JI, Kim BG, Hwang YS, Wozney JM, Chi XZ, Bae SC, Choi KY, Cho JY, Choi JY, Ryoo HM. 2005. Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J Biol Chem 280: 35579-35587. https://doi.org/10.1074/jbc.M502267200
  27. Ryoo HM, Hoffmann HM, Beumer T, Frenkel B, Towler DA, Stein GS, Stein JL, van Wijnen AJ, Lian JB. 1997. Stage-specific expression of Dlx-5 during osteoblast differentiation: involvement in regulation of osteocalcin gene expression. Mol Endocrinol 11: 1681-1694. https://doi.org/10.1210/mend.11.11.0011
  28. Komori T. 2005. Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem 95: 445-453. https://doi.org/10.1002/jcb.20420
  29. Marie PJ. 2008. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473: 98-105. https://doi.org/10.1016/j.abb.2008.02.030
  30. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. 1997. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755-764. https://doi.org/10.1016/S0092-8674(00)80258-5
  31. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ. 1997. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 765-771. https://doi.org/10.1016/S0092-8674(00)80259-7
  32. Yang HM, Seo HS. 2013. Effects of ascorbic acid on osteoblast differentiation in MC3T3-E1 cells. Soonchunhyang Med Sci 19: 93-98. https://doi.org/10.15746/sms.13.021
  33. Kim BG, Kim HJ, Park HJ, Kim YJ, Yoon WJ, Lee SJ, Ryoo HM, Cho JY. 2006. Runx2 phosphorylation induced by fibroblast growth factor-2/protein kinase C pathways. Proteomics 6: 1166-1174. https://doi.org/10.1002/pmic.200500289
  34. Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, Ryoo HM, Choi JY, Yoshida M, Nishino N, Oh BC, Lee KS, Lee YH, Bae SC. 2006. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem 281: 16502-16511. https://doi.org/10.1074/jbc.M512494200

Cited by

  1. 골 대사 및 phytochemicals의 estrogen 효과 vol.28, pp.7, 2017, https://doi.org/10.5352/jls.2018.28.7.874
  2. 골 대사 및 phytochemicals의 estrogen 효과 vol.28, pp.7, 2017, https://doi.org/10.5352/jls.2018.28.7.874
  3. The Effect of Natural-Herb Mixture Extract on Osteogenic Differentiation in Human Mesenchymal Stem cells vol.43, pp.5, 2019, https://doi.org/10.17779/kaomp.2019.43.5.005
  4. 홍국색소의 항산화 활성 및 조골세포 분화에 미치는 영향 vol.30, pp.5, 2020, https://doi.org/10.5352/jls.2020.30.5.468