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On Some Polynomials with Weighted Sums

Seon-Hong Kim"

Abstract

n—1 n—1

Abstract. In this note, we study a generalization of a certain polynomial z" — Z (z,kzk, where E a, =1, a;, = 0 for each
k=0 £=0

k, whose all zeros except for z = 1 lie on the circle of radius 1/2 with center at the origin.

Keywords: Polynomial, Weighted Sum

1. Introduction

Throughout this paper, n is an integer > 3, p > 1,
and we denote C(r) by the circle of radius r with center
at the origin. All polynomials in this paper will be
assumed to have real coefficients. It follows from
Enestrom-Kakeya theorem for the statement and its
proof{” to
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where Y a, =1, a, > 0 for each k that all zeros of (1)
k=0

do not lie outside C(1). Kim? studied polynomials of
type (1),

n—1
2" =Y a2k,
k=0

whose all zeros except for =1 lie on C(1/p), where
p>1. For convenience, we call these polynomials

n—1

C(1/p)-polynomials, and Y ) a,z" their weighted sums,
=0

respectively. Kim™ showed that, given p > 1, there exist

C(1/p)-polynomials whose degree of weighted sum is
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n—1. However, by estimating some coefficients of
lacunary polynomials, he obtained sufficient conditions
of certain lacunary C(1/p)
-polynomials. Perhaps the most basic example of

for nonexistence

C(1/2)-polynomials is
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For this, see Proposition 1 of [2]. In this paper, we
study a generalization
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of the polynomial (2).
2. Results and Questions

The polynomial
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can be computed by
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For rare choices of ¢, the polynomial p(z) are nicely
factored. For example,
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(z=1)((22)" = 1)((22)" " +1), t=—12n

Less nice examples are when t =— 2> "1 +1,

1
= (z—1)*

22" (22 —1)

(22n+1(22n_~_22n*1 +"‘+Z”+1)
+ (222t g 1)

p(z)

and when t =— 2" (2n+1),
1 1)
p(z) = W(z——) u(z),

where
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A polynomial P(z) of degree n is said to be
self-reciprocal if it satisfies P(z) =2"P(1/z). The
zeros of a self-reciprocal polynomial either lie on C(1)
or occur in pairs conjugate to C(1). Cohn obtained a
sufficient condition for a self-reciprocal polynomial
P(z) to have all its zeros on C(1); if all zeros of P’ (2)
lie in |z| < 1, then all zeros of P(z) lie on C(1). For
this®), see p. 230 of [3]. Using this and Enestrom-Kakeya
theorem, we can prove the following.

Proposition 1 If —2"/n < t < 2"/n, then p(z) has
all its zeros except for 1 lyingon C(1/2).

Proof Let
f(z) — 2271+12271+1 +2tzn+1 _tzn -1

that is the last factor of p(z) in (3). Observe that
f(1/2) =0, and for z=1/2,1, the zeros of the
polynomial p(z) satisfy f(z)=0. Assume that
z#1/2,1. Then
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Let g(z)=1+ E 2F2F +¢2". Changing variable
k=1

y =2z, we have

gy) =1+y+y’+ - +y"!
+(1+t/2n)yn+yn+1+ +y2n

that is self-reciprocal. Then

g (y)=2ny" '+ (2n—1)y*" 2+ -
+(n+1)y" +n(1+t/2")y" !
+(n—=1)y" >+ - +2y+1.

So if nt+l1=n(1+t/2") =n—1, ie. —2"/n
<t <2"/n, then by Enestrém-Kakeya theorem and
Cohn's theorem, ¢(y) has all its zeros on C(1), which
implies the result. |

Remark 2. By Proposition 1, the zeros of p(z) lie on
C(1/2) for a wide range of values of t. But it follows
from numerical computations that for ¢ sufficiently large,
the zeros start to leave C(1/2). But it seems that p(z)
with large ¢ mostly form pairs of zeros «, (3 such that
Vlapl=1/2. Thus they “remember” the circle
c(1/2).

The polynomial p(z) seems to have the discriminant
with three nice factors. Perhaps the discriminant has only
real zeros. More specifically, we conjecture the

following.

Conjecture 3 The discriminant of the polynomial p(z)
is
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where a(t) is a polynomial of degree n— 1 with integer
coefficients whose all zeros are real.
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