References
- Nordberg J, Arner ESJ. 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 31: 1287-1312. https://doi.org/10.1016/S0891-5849(01)00724-9
- Rhee SG, Kang SW, Jeong W, Chang T-S, Yang K-S, Woo HA. 2005. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol. 17: 183-189. https://doi.org/10.1016/j.ceb.2005.02.004
- Panfili E, Sandri G, Ernster L. 1991. Distribution of glutathione peroxidases and glutathione reductase in rat brain mitochondria. FEBS 290: 35-37. https://doi.org/10.1016/0014-5793(91)81219-X
- Rhee SG, Chae HZ, Kim K. 2005. Peroxiredoxin: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38: 1543-1552. https://doi.org/10.1016/j.freeradbiomed.2005.02.026
- Karplus PA. 2015. A primer on peroxiredoxin biochemistry. Free Radic. Biol. Med. 80: 183-190. https://doi.org/10.1016/j.freeradbiomed.2014.10.009
- Martin RE, Cao Z, Bulleid NJ. 2014. Regulating the level of intracellular hydrogen peroxide: the role of peroxiredoxin IV. Biochem. Soc. Trans. 42: 42-46. https://doi.org/10.1042/BST20130168
- Hoyle NP, O’Neill JS. 2014. Oxidation-reduction cycle of peroxiredoxin proteins and non transcriptional aspects of timekeeping. Biochemistry 54: 184-193.
- Kang SW, Rhee SG, Chang TS, Jeong WJ, Chai MH. 2005. 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends in Mol. Med. 11: 571-578. https://doi.org/10.1016/j.molmed.2005.10.006
- Park SG, Cha MK, Jeong W, Kim IH. 2000. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275: 5723-5732. https://doi.org/10.1074/jbc.275.8.5723
- Seo MS, Kang SW, Kim K, Baines I, Lee TH, Rhee SG. 2000. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem. 275: 20346-20354. https://doi.org/10.1074/jbc.M001943200
- Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, et al. 2004. Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117: 625-635. https://doi.org/10.1016/j.cell.2004.05.002
- Gething MJ, Sambrook J. 1992. Protein folding in the cell. Nature 355: 33-45. https://doi.org/10.1038/355033a0
- Hendrick JP, Hartl FU. 1993. Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62: 349-384. https://doi.org/10.1146/annurev.bi.62.070193.002025
- Ellis RJ. 1993. The general concept of molecular chaperones. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 339: 257-261. https://doi.org/10.1098/rstb.1993.0023
- Nover L. 2000. Heat stress response; a complex gene with chaperones and transcription factors. Procedings of EMBO Lecture Course.
- Feder ME, Hofmann GE. 1999. Heat-shock proteins, molecular chaperones, and the stress trsponse; evolutionary and ecological physiology. Annu. Rev. Physiol. 61: 243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
- Chae HZ, Oubrahim H, Park JW, Rhee SG, Chock PB. 2011. Protein glutathionylation in the regulation of peroxidase that function as antioxidants, molecular chaperone, and signal modulators. Antioxidants & Redox Signaling 16: 506-523.
-
Woo HA, Yim SH, Shin DH, Kang D, Yu D-Y, Rhee SG. 2010. Inactivation of peroxiredoxin I by phosphorylation allows localized
$H_2O_2$ accumulation for cell signaling. Cell 140: 517-528. https://doi.org/10.1016/j.cell.2010.01.009 - Rhee SG. 2016. Overview on peroxiredoxin. Mol. Cells. 39:1-5. https://doi.org/10.14348/molcells.2016.2368
- Kim JS, Bang MA, Lee S, Chae HZ, Kim K. 2010. Distinct functional roles of peroxiredoxin isozymes and glutathione peroxidase from fission yeast, Schizosaccharomyces pombe. BMB Rep. 43: 170-175. https://doi.org/10.5483/BMBRep.2010.43.3.170
- Chae HZ, Chung SJ, Rhee SG. 1994. Thioredoxin-dependent Peroxidase Reductase from yeast. J. Biol. Chem. 269: 27670-27078.
- Lee S, Kim JS, Yun CH, Chae HZ, Kim K. 2009. Aspartyl aminopeptidase of Schizosaccharomyces pombe has a molecular chaperone function. BMB Rep. 42: 812-816. https://doi.org/10.5483/BMBRep.2009.42.12.812
- Wood ZA, Schroder E, Harris JR, Poole LB. 2003. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28: 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8
- Montemaritini M, Kalisz HM, Hecht HJ. 1999. Activaion of active-site cysteine residues in the peroxiredoxin-type tryparedoxin peroxidase of Crithidia fasciculate. Eur. J. Biochem. 264: 516-524. https://doi.org/10.1046/j.1432-1327.1999.00656.x
- Flohe L, Budde H, Bruns K, Castro H, Clos J, Hofmann B, et al. 2002. Tryparedoxin peroxidase of Leishmanis donovani : molecular cloning, heterogous expression, specificity and catalytic mechanism. Arch. Biochem. Biophys. 397: 324-335. https://doi.org/10.1006/abbi.2001.2688
- Schroder E, Littlechid JA, Lebedev AA, Errington N, Vagin AA, Isupov MN. 2000. Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A. Structure 8: 605-615. https://doi.org/10.1016/S0969-2126(00)00147-7
- Chae HZ, Uhm TB, Rhee SG. 1994. Dimerization of thiol-specific antioxidant and essential role of cysteine 47. 1994. Proc. Natl. Acad. Sci. USA 91:7022-7026. https://doi.org/10.1073/pnas.91.15.7022
- Hong SH, Lee SS, Chung JM, Jung HS, Singh S, Mondal S, et al. 2017. Protoplasma 254: 327-334. https://doi.org/10.1007/s00709-016-0948-0