DOI QR코드

DOI QR Code

Interaction of a 22 kDa Peptidyl Prolyl cis/trans Isomerase with the Heat Shock Protein DnaK in Vibrio anguillarum

  • Kang, Dong Seop (Department of Biotechnology, Pukyong National University) ;
  • Moon, Soo Young (Department of Biotechnology, Pukyong National University) ;
  • Cho, Hwa Jin (Department of Biotechnology, Pukyong National University) ;
  • Lee, Jong Min (Department of Biotechnology, Pukyong National University) ;
  • Kong, In-Soo (Department of Biotechnology, Pukyong National University)
  • Received : 2016.10.07
  • Accepted : 2016.11.14
  • Published : 2017.03.28

Abstract

Peptidyl prolyl cis/trans isomerases (PPIases) catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds preceding prolines. We investigated the protein-protein interaction between a 22 kDa PPIase (VaFKBP22, an FK506-binding protein) and the molecular chaperone DnaK derived from Vibrio anguillarum O1 (VaDnaK) using GST pull-down assays and a bacterial two-hybrid system for in vivo and in vitro studies, respectively. Furthermore, we analyzed the three-dimensional structure of the protein-protein interaction. Based on our results, VaFKBP22 appears to act as a cochaperone of VaDnaK, and contributes to protein folding and stabilization via its peptidyl-prolyl cis/trans isomerization activity.

Keywords

References

  1. Phizicky EM, Fields S. 1995. Protein-protein interactions: methods for detection and analysis. Microbiol. Rev. 59: 94-123.
  2. Klotz IM, Darnall DW, Langerman NR. 1975. Quarternary structure of proteins, pp. 293-411. In Neurath H and Hill RL. The Proteins, Vol. 1. Academic Press, New York. USA.
  3. Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S, Chemama, Y. 2001. The protein-protein interaction map of Helicobacter pylori. Nature 409: 211-215. https://doi.org/10.1038/35051615
  4. Tremmel D, Tropschug M. 2007. Neurospora crassa FKBP22 is a novel ER chaperone and functionally cooperates with BiP. J. Mol. Biol. 369: 55-68 https://doi.org/10.1016/j.jmb.2007.01.092
  5. Jo GA, Lee JM, No G, Kang DS, Kim SH, Ahn SH, Kong IS. 2015. Isolation and characterization of a 17-kDa FKBP-type peptidyl-prolyl cis/trans isomerase from Vibrio anguillarum. Protein Expr. Purif. 110: 130-137. https://doi.org/10.1016/j.pep.2015.02.019
  6. Kim SH, Lee JM, Kang DS, Kim DG, Ahn SH, Kong IS. 2014. Expression, purification and characterization of soluble recombinant peptidyl-prolyl cis/trans isomerase from Vibrio anguillarum. Protein Expr. Purif. 101: 54-60. https://doi.org/10.1016/j.pep.2014.06.005
  7. Calloni G, Chen T, Schermann SM, Chang HC, Genevaux P, Agostini F, Hartl FU. 2012. DnaK functions as a central hub in the E. coli chaperone network. Cell Rep. 1: 251-264. https://doi.org/10.1016/j.celrep.2011.12.007
  8. Zeiner M, Gebauer M, Gehring U. 1997. Mammalian protein RAP46: an interaction partner and modulator of 70 kDa heat shock proteins. EMBO J. 16: 5483-5490. https://doi.org/10.1093/emboj/16.18.5483
  9. Bukau B, Deuerling E, Pfund C, Craig EA. 2000. Getting newly synthesized proteins into shape. Cell 101: 119-122. https://doi.org/10.1016/S0092-8674(00)80806-5
  10. Ha JH, McKay DB. 1994. ATPase kinetics of recombinant bovine 70 kDa heat shock cognate protein and its aminoterminal ATPase domain. Biochemistry 33: 14625-14635. https://doi.org/10.1021/bi00252a031
  11. Meiri D, Tazat K, Cohen-Peer R, Farchi-Pisanty O, Aviezer-Hagai K, Avni A, Breiman A. 2010. Involvement of Arabidopsis ROF2(FKBP65) in thermotolerance. Plant Mol. Biol. 72: 191-203. https://doi.org/10.1007/s11103-009-9561-3
  12. Owens-Grillo JK, Hoffmann K, Hutchison KA, Yem AW, Deibel MR, Handschumacher RE, Pratt WB. 1995. The cyclosporin A-binding immunophilin CyP-40 and the FK506-binding immunophilin hsp56 bind to a common site on hsp90 and exist in independent cytosolic heterocomplexes with the untransformed glucocorticoid receptor. J. Biol. Chem. 270: 20479-20484. https://doi.org/10.1074/jbc.270.35.20479
  13. Pratt WB, Roft DO. 2003. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. 228: 111-133. https://doi.org/10.1177/153537020322800201
  14. Ryan MT, Pfanner N. 2002. HSP70 proteins in protein translocation. Adv. Protein Chem. 59: 223-242.
  15. Young JC, Barral JM, Ulrich Hartl F. 2003. More than folding: localized functions of cytosolic chaperones. Trends Biochem. Sci. 28: 541-547. https://doi.org/10.1016/j.tibs.2003.08.009
  16. Zhang X, Wang Y, Li H, Zhang W, Wu D, Mi H. 2004. The mouse FKBP23 binds to BiP in ER and the binding of Cterminal domain is interrelated with $Ca^{2+}$ concentration. FEBS Lett. 559: 57-60. https://doi.org/10.1016/S0014-5793(04)00024-9
  17. Singh R, Lee MO, Lee JE, Choi J, Park JH, Kim EH, Agrawal GK. 2012. Rice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system. Plant Physiol. 160: 477-487. https://doi.org/10.1104/pp.112.200071
  18. Kityk R, Kopp J, Sinning I, Mayer MP. 2012. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48: 863-874. https://doi.org/10.1016/j.molcel.2012.09.023
  19. Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER. 2009. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. USA 106: 8471-8476. https://doi.org/10.1073/pnas.0903503106
  20. Calderwood SK. 2013. Molecular cochaperones: tumor growth and cancer treatment. Scientifica (Cairo) 2013: 217513.
  21. Young JC, Obermann WM, Hartl FU. 1998. Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90. J. Biol. Chem. 273: 18007-18010. https://doi.org/10.1074/jbc.273.29.18007
  22. Assimon VA, Southworth DR, Gestwicki JE. 2015. Specific binding of tetratricopeptide repeat proteins to heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) is regulated by affinity and phosphorylation. Biochemistry 54: 7120-7131. https://doi.org/10.1021/acs.biochem.5b00801
  23. Fellerer C, Schweiger R, Schongruber K, Soll J, Schwenkert S. 2011. Cytosolic HSP90 cochaperones HOP and FKBP interact with freshly synthesized chloroplast preproteins of Arabidopsis. Mol. Plant 4: 1133-1145. https://doi.org/10.1093/mp/ssr037
  24. Schweiger R, Soll J, Jung K, Heermann R, Schwenkert S. 2013. Quantification of interaction strengths between chaperones and tetratricopeptide repeat domain-containing membrane proteins. J. Biol. Chem. 288: 30614-30625. https://doi.org/10.1074/jbc.M113.493015
  25. Kang CB, Hong Y, Dhe-Paganon S, Yoon HS. 2008. FKBP family proteins: immunophilins with versatile biological functions. Neurosignals 16: 318-325. https://doi.org/10.1159/000123041