DOI QR코드

DOI QR Code

Host Cell Nuclear Localization of Shigella flexneri Effector OspF Is Facilitated by SUMOylation

  • Jo, Kyungmin (Celltrion) ;
  • Kim, Eun Jin (Department of Pharmacy, College of Pharmacy, Hanyang University) ;
  • Yu, Hyun Jin (Department of Pharmacy, College of Pharmacy, Hanyang University) ;
  • Yun, Cheol-Heui (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Dong Wook (Department of Pharmacy, College of Pharmacy, Hanyang University)
  • Received : 2016.11.24
  • Accepted : 2016.12.19
  • Published : 2017.03.28

Abstract

When Shigella infect host cells, various effecter molecules are delivered into the cytoplasm of the host cell through the type III secretion system (TTSS) to facilitate their invasion process and control the host immune responses. Among these effectors, the S. flexneri effector OspF dephosphorylates mitogen-activated protein kinases and translocates itself to the nucleus, thus preventing histone H3 modification to regulate expression of proinflammatory cytokines. Despite the critical role of OspF, the mechanism by which it localizes in the nucleus has remained to be elucidated. In the present study, we identified a potential small ubiquitin-related modifier (SUMO) modification site within OspF and we demonstrated that Shigella TTSS effector OspF is conjugated with SUMO in the host cell and this modification mediates the nuclear translocation of OspF. Our results show a bacterial virulence factor can exploit host post-translational machinery to execute its intracellular trafficking.

Keywords

References

  1. Cossart P, Sansonetti PJ. 2004. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304: 242-248. https://doi.org/10.1126/science.1090124
  2. Schroeder GN, Hilbi H. 2008. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin. Microbiol. Rev. 21: 134-156. https://doi.org/10.1128/CMR.00032-07
  3. Ashida H, Ogawa M, Mimuro H, Kobayashi T, Sanada T, Sasakawa C. 2011. Shigella are versatile mucosal pathogens that circumvent the host innate immune system. Curr. Opin. Immunol. 23: 448-455. https://doi.org/10.1016/j.coi.2011.06.001
  4. Bhavsar AP, Guttman JA, Finlay BB. 2007. Manipulation of host-cell pathways by bacterial pathogens. Nature 449: 827-834. https://doi.org/10.1038/nature06247
  5. Ogawa M, Handa Y, Ashida H, Suzuki M, Sasakawa C. 2008. The versatility of Shigella effectors. Nat. Rev. Microbiol. 6: 11-16. https://doi.org/10.1038/nrmicro1814
  6. Parsot C. 2009. Shigella type III secretion effectors: how, where, when, for what purposes? Curr. Opin. Microbiol. 12: 110-116. https://doi.org/10.1016/j.mib.2008.12.002
  7. Brennan DF, Barford D. 2009. Eliminylation: a posttranslational modification catalyzed by phosphothreonine lyases. Trends Biochem. Sci. 34: 108-114. https://doi.org/10.1016/j.tibs.2008.11.005
  8. Puhar A, Tronchere H, Payrastre B, Nhieu GT, Sansonetti PJ. 2013. A Shigella effector dampens inflammation by regulating epithelial release of danger signal ATP through production of the lipid mediator PtdIns5P. Immunity 39: 1121-1131. https://doi.org/10.1016/j.immuni.2013.11.013
  9. Zurawski DV, Mitsuhata C, Mumy KL, McCormick BA, Maurelli AT. 2006. OspF and OspC1 are Shigella flexneri type III secretion system effectors that are required for postinvasion aspects of virulence. Infect. Immun. 74: 5964-5976. https://doi.org/10.1128/IAI.00594-06
  10. Zurawski DV, Mumy KL, Faherty CS, McCormick BA, Maurelli AT. 2009. Shigella flexneri type III secretion system effectors OspB and OspF target the nucleus to downregulate the host inflammatory response via interactions with retinoblastoma protein. Mol. Microbiol. 71: 350-368. https://doi.org/10.1111/j.1365-2958.2008.06524.x
  11. Arbibe L, Kim DW, Batsche E, Pedron T, Mateescu B, Muchardt C, et al. 2007. An injected bacterial effector targets chromatin access for transcription factor NF-${\kappa}B$ to alter transcription of host genes involved in immune responses. Nat. Immunol. 8: 47-56. https://doi.org/10.1038/ni1423
  12. Kramer RW, Slagowski NL, Eze NA, Giddings KS, Morrison MF, Siggers KA, et al. 2007. Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation. PLoS Pathog. 3: e21. https://doi.org/10.1371/journal.ppat.0030021
  13. Harouz H, Rachez C, Meijer BM, Marteyn B, Donnadieu F, Cammas F, et al. 2014. Shigella flexneri targets the HP1gamma subcode through the phosphothreonine lyase OspF. EMBO J. 33: 2606-2622. https://doi.org/10.15252/embj.201489244
  14. Geiss-Friedlander R, Melchior F. 2007. Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell Biol. 8: 947-956. https://doi.org/10.1038/nrm2293
  15. Gill G. 2004. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18: 2046-2059. https://doi.org/10.1101/gad.1214604
  16. Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH. 2007. Classical nuclear localization signals: definition, function, and interaction with importin alpha. J. Biol. Chem. 282: 5101-5105. https://doi.org/10.1074/jbc.R600026200
  17. Kim JH, Lee JM, Nam HJ, Choi HJ, Yang JW, Lee JS, et al. 2007. SUMOylation of pontin chromatin-remodeling complex reveals a signal integration code in prostate cancer cells. Proc. Natl. Acad. Sci. USA 104: 20793-20798. https://doi.org/10.1073/pnas.0710343105
  18. Kim DW, Lenzen G, Page AL, Legrain P, Sansonetti PJ, Parsot C. 2005. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitinconjugating enzymes. Proc. Natl. Acad. Sci. USA 102: 14046-14051. https://doi.org/10.1073/pnas.0504466102
  19. Neumann C, Fraiture M, Hernandez-Reyes C, Akum FN, Virlogeux-Payant I, Chen Y, et al. 2014. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells. Front. Microbiol. 5: 548.
  20. Mazurkiewicz P, Thomas J, Thompson JA, Liu M, Arbibe L, Sansonetti P, Holden DW. 2008. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogenactivated protein kinases. Mol. Microbiol. 67: 1371-1383. https://doi.org/10.1111/j.1365-2958.2008.06134.x
  21. Ribet D, Hamon M, Gouin E, Nahori MA, Impens F, Neyret-Kahn H, et al. 2010. Listeria monocytogenes impairs SUMOylation for efficient infection. Nature 464: 1192-1195. https://doi.org/10.1038/nature08963
  22. Orth K, Xu Z, Mudgett MB, Bao ZQ, Palmer LE, Bliska JB, et al. 2000. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290: 1594-1597. https://doi.org/10.1126/science.290.5496.1594
  23. Hotson A, Chosed R, Shu H, Orth K, Mudgett MB. 2003. Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol. Microbiol. 50: 377-389. https://doi.org/10.1046/j.1365-2958.2003.03730.x

Cited by

  1. Shigella entry unveils a calcium/calpain-dependent mechanism for inhibiting sumoylation vol.6, pp.None, 2017, https://doi.org/10.7554/elife.27444
  2. The Shigella type three secretion system effector OspF invades host nucleus by binding host importin α1 vol.35, pp.5, 2017, https://doi.org/10.1007/s11274-019-2635-8
  3. Nuclear trafficking of bacterial effector proteins vol.23, pp.6, 2017, https://doi.org/10.1111/cmi.13320