References
- Judd S. 2010. The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment. Elsevier, Amsterdam. Netherlands.
- Xiong Y, Liu Y. 2010. Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling. Appl. Microbiol. Biotechnol. 86: 825-837. https://doi.org/10.1007/s00253-010-2463-0
- Yigit N, Harman I, Civelekoglu G, Koseoglu H, Cicek N, Kitis M. 2008. Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions. Desalination 231: 124-132. https://doi.org/10.1016/j.desal.2007.11.041
- Sweity A, Ying W, Ali-Shtayeh MS, Yang F, Bick A, Oron G, Herzberg M. 2011. Relation between EPS adherence, viscoelastic properties, and MBR operation: biofouling study with QCM-D. Water Res. 45: 6430-6440. https://doi.org/10.1016/j.watres.2011.09.038
- Kjelleberg S, Givskov M. 2007. The Biofilm Mode of Life: Mechanisms and Adaptations. Horizon Scientific Press, UK.
- Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ. 2006. Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ. Microbiol. 8: 1997-2011. https://doi.org/10.1111/j.1462-2920.2006.01080.x
- Serra DO, Richter AM, Hengge R. 2013. Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J. Bacteriol. 195: 5540-5554. https://doi.org/10.1128/JB.00946-13
- Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I. 2002. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol. Microbiol. 43: 793-808. https://doi.org/10.1046/j.1365-2958.2002.02802.x
- Matthysse AG, McMahan S. 1998. Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants. Appl. Environ. Microbiol. 64: 2341-2345.
- Spiers AJ, Rainey PB. 2005. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Microbiology 151: 2829-2839. https://doi.org/10.1099/mic.0.27984-0
- Trivedi A, Mavi PS, Bhatt D, Kumar A. 2016. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis. Nat. Commun. 7: 11392. https://doi.org/10.1038/ncomms11392
- Loiselle M, Anderson KW. 2003. The use of cellulase in inhibiting biofilm formation from organisms commonly found on medical implants. Biofouling 19: 77-85. https://doi.org/10.1080/0892701021000030142
- Rajasekharan SK, Ramesh S. 2013. Cellulase inhibits Burkholderia cepacia biofilms on diverse prosthetic materials. Pol. J. Microbiol. 62: 327-330.
- Dow JM, Crossman L, Findlay K, He Y-Q, Feng J-X, Tang JL. 2003. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl. Acad. Sci. USA 100: 10995-11000. https://doi.org/10.1073/pnas.1833360100
- Munoz C, Hidalgo C, Zapata M, Jeison D, Riquelme C, Rivas M. 2014. Use of cellulolytic marine bacteria for enzymatic pretreatment in microalgal biogas production. Appl. Environ. Microbiol. 80: 4199-4206. https://doi.org/10.1128/AEM.00827-14
- Robledo M, Rivera L, Jimenez-Zurdo JI, Rivas R, Dazzo F, Velazquez E, et al. 2012. Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb. Cell Fact. 11: 125. https://doi.org/10.1186/1475-2859-11-125
- O'Toole GA. 2011. Microtiter dish biofilm formation assay. J. Vis. Exp. pii: 2437.
- Deng Y, Lim A, Lee J, Chen S, An S, Dong Y-H, Zhang L-H. 2014. Diffusible signal factor (DSF) quorum sensing signal and structurally related molecules enhance the antimicrobial efficacy of antibiotics against some bacterial pathogens. BMC Microbiol. 14: 1. https://doi.org/10.1186/1471-2180-14-1
- Lequette Y, Boels G, Clarisse M, Faille C. 2010. Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling 26: 421-431. https://doi.org/10.1080/08927011003699535
- Nijland R, Hall MJ, Burgess JG. 2010. Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One 5:e15668. https://doi.org/10.1371/journal.pone.0015668
- Lee S, Park S-K, Kwon H, Lee SH, Lee K, Nahm CH, et al. 2016. Crossing the border between laboratory and field: bacterial quorum quenching for anti-biofouling strategy in an MBR. Environ. Sci. Technol. 50: 1788-1795. https://doi.org/10.1021/acs.est.5b04795
- Lee JM, Heitmann JA, Pawlak JJ. 2007. Rheology of carboxymethyl cellulose solutions treated with cellulases. BioResources 2: 20-33.
- Kim S-R, Oh H-S, Jo S-J, Yeon K-M, Lee C-H, Lim D-J, et al. 2013. Biofouling control with bead-entrapped quorum quenching bacteria in membrane bioreactors: physical and biological effects. Environ. Sci. Technol. 47: 836-842. https://doi.org/10.1021/es303995s
- Lee SH, Lee S, Lee K, Nahm CH, Kwon H, Oh H-S, et al. 2016. More efficient media design for enhanced biofouling control in a membrane bioreactor: quorum quenching bacteria entrapping hollow cylinder. Environ. Sci. Technol. 50: 8596-8604. https://doi.org/10.1021/acs.est.6b01221
- Updegraff DM. 1969. Semimicro determination of cellulose in biological materials. Anal. Biochem. 32: 420-424. https://doi.org/10.1016/S0003-2697(69)80009-6
- Scott Jr TA, Melvin EH. 1953. Determination of dextran with anthrone. Anal. Chem. 25: 1656-1661. https://doi.org/10.1021/ac60083a023
- Zhang H, Jie X, Yang Y, Wang Z, Yang F. 2009. Mechanism of calcium mitigating membrane fouling in submerged membrane bioreactors. J. Environ. Sci. 21: 1066-1073. https://doi.org/10.1016/S1001-0742(08)62383-9
- Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC. 2005. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 339: 69-72. https://doi.org/10.1016/j.ab.2004.12.001
-
Bio-Rad. Manual I. Quick
$^Start{TM}$ Bradford Protein Assay. BioRad Laboratories, Hercules, CA. USA. - Teather RM, Wood PJ. 1982. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43: 777-780.
- Kostakioti M, Hadjifrangiskou M, Hultgren SJ. 2013. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 3: a010306.
- Cheng K-C, Catchmark JM, Demirci A. 2009. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J. Biol. Eng. 3: 1. https://doi.org/10.1186/1754-1611-3-1
- Wang Z, Wu Z, Tang S. 2009. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Res. 43: 2504-2512. https://doi.org/10.1016/j.watres.2009.02.026
- Mah T-F, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426: 306-310. https://doi.org/10.1038/nature02122
- Sachidanandham R, Yew-Hoong Gin K, Laa Poh C. 2005. Monitoring of active but non-culturable bacterial cells by flow cytometry. Biotechnol. Bioeng. 89: 24-31. https://doi.org/10.1002/bit.20304
- Takei T, Ikeda K, Ijima H, Kawakami K. 2011. Fabrication of poly(vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization. Process Biochem. 46: 566-571. https://doi.org/10.1016/j.procbio.2010.10.011
Cited by
- Membrane-based technologies for post-treatment of anaerobic effluents vol.1, pp.1, 2017, https://doi.org/10.1038/s41545-018-0021-y