DOI QR코드

DOI QR Code

Deinococcus rubrus sp. nov., a Bacterium Isolated from Antarctic Coastal Sea Water

  • Srinivasan, Sathiyaraj (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Lim, Sangyong (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Lim, Jae-Hyun (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Jung, Hee-Young (College of Agricultural and Life Sciences, Kyungpook National University) ;
  • Kim, Myung Kyum (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University)
  • Received : 2016.09.05
  • Accepted : 2016.12.06
  • Published : 2017.03.28

Abstract

Two Gram-staining-negative, red-pinkish, coccus-shaped, non-motile, and aerobic bacterial strains, designated $Ant21^T$ and Ant22, were isolated from the Antarctic coastal sea water. Strains $Ant21^T$ and Ant22 showed UVC and gamma radiation resistance. Phylogenetic analyses based on 16S rRNA gene sequences determined that these strains belong to the genus Deinococcus. Through the analyses of the 16S rRNA gene sequences, strains $Ant21^T$ and Ant22 were found to have 97.7% and 97.8% similarity to Deinococcus marmoris DSM $12784^T$ and 97.0% and 97.2% similarity to Deinococcus saxicola AA-$1444^T$, respectively. The sequence similarity with the type strains of other Deinococcus species was less than 96.9% for both strains. Strains $Ant21^T$ and Ant22 shared relatively high 16S rRNA gene sequence similarity (99.3%) and had a closely related DNA reassociation value of $84{\pm}0.5%$. Meanwhile, they showed a low level of DNA-DNA hybridization (<30%) with other closely related species of the genus Deinococcus. The two strains also showed typical chemotaxonomic features for the genus Deinococcus, in terms of the major polar lipid (phosphoglycolipid) and the major fatty acids ($C_{16:0}$, $C_{16:1}$ ${\omega}6c/{\omega}7c$, $iso-C_{17:0}$, and $iso-C_{15:0}$). They grew at temperatures between $4^{\circ}C$ and $30^{\circ}C$ and at pH values of 6.0-8.0. Based on the physiological characteristics, the 16S rRNA gene sequence analysis results, and the low DNA-DNA reassociation level with Deionococcus marmoris, strains $Ant21^T$ ($=KEMB\;9004-167^T$ $=JCM\;31436^T$) and Ant22 (KEMB 9004-168 =JCM 31437) represent novel species belonging to the genus Deinococcus, for which the name Deinococcus rubrus is proposed.

Keywords

References

  1. Brooks BW, Murray RGE. 1981. Nomenclature for "Micrococcus radiodurans" and other radiation-resistant cocci: Deinococcaceae fam. nov., and Deinococcus gen. nov., including five species. Int. J. Syst. Evol. Microbiol. 31: 353-360.
  2. Kim MK, Srinivasan S, Back CG, Joo ES, Lee SY, Jung HY. 2015. Complete genome sequence of Deinococcus swuensis, a bacterium resistant to radiation toxicity. Mol. Cell. Toxicol. 11: 315-321. https://doi.org/10.1007/s13273-015-0031-5
  3. Lee S, Yoon H, Bae H, Ha J, Park H, Shin Y, Son S. 2014. Implication of ultraviolet B radiation exposure for nonmelanoma skin cancer in Korea. Mol. Cell. Toxicol 10: 91-94. https://doi.org/10.1007/s13273-014-0011-1
  4. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, et al. 2005. Extensive diversity of ionizing-radiationresistant bacteria recovered from Sonoran desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl. Environ. Microbiol. 71: 5225-5235. https://doi.org/10.1128/AEM.71.9.5225-5235.2005
  5. Srinivasan S, Lee JJ, Lim SY, Joe MH, Im SH, Kim MK. 2015. Deinococcus radioresistens sp. nov., a UV and gamma radiation-resistant bacterium isolated from mountain soil. Antonie Van Leeuwenhoek 107: 539-545. https://doi.org/10.1007/s10482-014-0350-x
  6. Srinivasan S, Kim MK, Joo ES, Lee SY, Lee DS, Jung HY. 2015. Complete genome sequence of Rufibacter sp. DG31D, a bacterium resistant to gamma and UV radiation toxicity. Mol. Cell. Toxicol. 11: 415-421. https://doi.org/10.1007/s13273-015-0044-0
  7. Srinivasan S, Kim MK, Lim SY, Joe MH, Lee MJ. 2012. Deinococcus daejeonensis sp. nov., isolated from sludge in a sewage disposal plant. Int. J. Syst. Evol. Microbiol. 62: 1265-1270. https://doi.org/10.1099/ijs.0.033316-0
  8. Kisker C, Kuper J, Van Houten B. 2013. Prokaryotic nucleotide excision repair. Cold Spring Harb. Perspect. Biol. 5: a012591.
  9. Rainey FA, Nobre MF, Schumann P, Stackebrandt E, da Costa MS. 1997. Phylogenetic diversity of the Deinococci as determined by 16S ribosomal DNA sequence comparison. Int. J. Syst. Bacteriol. 47: 510-514. https://doi.org/10.1099/00207713-47-2-510
  10. Selvam K, Duncan JR, Tanaka M, Battista JR. 2013. Ddra, Ddrd, and Ppra: components of UV and mitomycin C resistance in Deinococcus radiodurans R1. PLoS One 8: e69007. https://doi.org/10.1371/journal.pone.0069007
  11. Son Y, Bae M, Lee C, Jo W, Kim S, Yang K, et al. 2014. Treatment with granulocyte colony-stimulating factor aggravates thrombocytopenia in irradiated mice. Mol. Cell. Toxicol. 10: 311-317. https://doi.org/10.1007/s13273-014-0035-6
  12. Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R, Burghardt J, et al. 1997. Deinococcus geothermalis sp. nov., and Deinococcus murrayi sp. nov., two extremely radiationresistant and slightly thermophilic species from hot springs. Int. J. Syst. Bacteriol. 47: 939-947. https://doi.org/10.1099/00207713-47-4-939
  13. Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R, Schumann P, et al. 2004. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught tolerating, UV-resistant bacteria from continental Antarctica. Syst. Appl. Microbiol. 27: 636-645. https://doi.org/10.1078/0723202042370008
  14. Marmur J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3: 208-218. https://doi.org/10.1016/S0022-2836(61)80047-8
  15. Shin SK, Kim EJ, Choi SM, Yi HN. 2016. Cochleicola gelatinilyticus gen. nov., sp. nov., isolated from a marine gastropod, Reichia luteostoma. J. Microbiol. Biotechnol. 26: 1439-1445. https://doi.org/10.4014/jmb.1604.04083
  16. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 41: 95-98.
  17. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  18. Kimura M. 1968. Evolutionary rate at the molecular level. Nature 217: 624-625. https://doi.org/10.1038/217624a0
  19. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  20. Felsenstein J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  21. Doetsch RN. 1981. Determinative methods of light microscopy, pp. 21-33. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds.). Manual of Methods for General Bacteriology, American Society for Microbiology, Washington, DC. USA.
  22. Joo ES, Kim EB, Jeon SH, Srinivasan S. 2015. Complete genome sequence of Deinococcus soli $N5^T$, a gammaradiation-resistant bacterium isolated from rice field in South Korea. J. Biotechnol. 211: 115-116. https://doi.org/10.1016/j.jbiotec.2015.07.008
  23. Joo ES, Lee JJ, Kang MS, Lim SY, Jeong SW, Kim EB, et al. 2016. Deinococcus actinosclerus sp. nov., a novel bacterium isolated from soil of a rocky hillside. Int. J. Syst. Evol. Microbiol. 66: 1003-1008. https://doi.org/10.1099/ijsem.0.000825
  24. Im WT, Jung HM, Ten LN, Kim MK, Bora N, Goodfellow M, et al. 2008. Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 58: 2348-2353. https://doi.org/10.1099/ijs.0.64082-0
  25. da Costa MS, Albuquerque L, Nobre MF, Wait R. 2011. The identification of polar lipids in prokaryotes. Methods Microbiol. 38: 165-181.
  26. Kuykendall LD, Roy MAO, Neill JJ, Devine TE. 1988. Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Bacteriol. 38: 358-361. https://doi.org/10.1099/00207713-38-4-358
  27. Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE. USA.
  28. Tamaoka J, Komagata K. 1984. Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25: 125-128. https://doi.org/10.1111/j.1574-6968.1984.tb01388.x
  29. Ezaki T, Hashimoto Y, Yabuuchi E. 1989. Fluorometric DNA-DNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Evol. Microbiol. 39: 224-229.
  30. Lai WA, Kampfer P, Arun AB, Shen FT, Huber B, Rekha PD, Young CC. 2006. Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int. J. Syst. Evol. Microbiol. 56: 787-791. https://doi.org/10.1099/ijs.0.64007-0

Cited by

  1. Predicted Cold Shock Proteins from the Extremophilic Bacterium Deinococcus maricopensis and Related Deinococcus Species vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/5231424
  2. Isolation and characterization of high exopolysaccharide-producing Weissella confusa VP30 from young children’s feces vol.18, pp.None, 2017, https://doi.org/10.1186/s12934-019-1158-1
  3. The complete genome of extracellular protease-producing Deinococcus sp. D7000 isolated from the hadal region of Mariana Trench Challenger Deep vol.57, pp.None, 2017, https://doi.org/10.1016/j.margen.2020.100832