DOI QR코드

DOI QR Code

Removal of different anionic dyes from aqueous solution by anion exchange membrane

  • Khan, Muhammad Ali (Key Laboratory of Optoelectronic Materials chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of sciences) ;
  • Khan, Muhammad Imran (CAS Key Laboratory of Soft Matter Chemistry, Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China) ;
  • Zafar, Shagufta (Department of Chemistry, The Govt. Sadiq College Women University)
  • Received : 2016.05.08
  • Accepted : 2016.12.22
  • Published : 2017.05.25

Abstract

Adsorption is a widely used technique for the removal of dyes from wastewaters by variety of adsorbents. In this work, the main focus is on the potential assessment of anion exchange membrane for the removal of different dyes using batch system and investigation of experimental data by applying various kinetic and thermodynamic models. The removal of anionic dyes i.e., Eosin-B, Eriochrome Black-T and Congo Red by anion exchange membrane BII from aqueous solution was carried out and effect of various parameters such as contact time, membrane dosage, temperature and ionic strength on the percentage removal of anionic dyes was studied. The experimental data was assessed by kinetic models namely pseudo-first-order, pseudo-second-order, Elovich liquid film diffusion, Bangham and the modified Freundlich models equation have been used to analyze the experimental data. These results indicate that the adsorption of these anionic dyes on BII follows pseudo-second-order kinetics with maximum values of regression coefficient (0.992-0.998) for all the systems. The adsorption of dyes was more suitable to be controlled by a liquid film diffusion mechanism. The adsorptive removal of dye Eosin-B and Eriochrome Black-T were decreased with temperature and thermodynamic parameters such as free energy (${\Delta}G^o$), enthalpy (${\Delta}H^o$) and entropy (${\Delta}S^o$) for adsorption of dyes on membrane BII were calculated at 298 K, 308 K and 318 K. The values of enthalpy and entropy were negative for EB and EBT representing that the adsorption of these dyes on BII is physiosorptive and exothermic in nature. Whereas the positive values of enthalpy and entropy for CR adsorption on BII, indicating that its adsorption is endothermic and spontaneous in nature. It is evident from this study that anion exchange membrane has shown good potential for the removal of dyes from aqueous solution and it can be used as adsorbent for dues removal on commercial levels.

Keywords

References

  1. Aharoni, C. and Ungarish, M. (1977), "Kinetics of activated chemisorption. Part 2.-Theoretical models", J. Chem. Soc., Faraday Tran., 73(1), 456-464. https://doi.org/10.1039/f19777300456
  2. Ai, L., Li, M. and Li, L. (2011), "Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, isotherms, and thermodynamics", J. Chem. Eng. Data, 56(8), 3475-3483. https://doi.org/10.1021/je200536h
  3. Alireza, N.E. and Mahshid, K., (2010), "Heterogeneous photodecolorization of Eriochrome Black T using Ni/P zeolite catalyst", Desalinat., 262, 79-85 https://doi.org/10.1016/j.desal.2010.05.047
  4. Alkan, M. and Dogan, M. (2001), "Adsorption of Copper(II) onto perlite", J. Coll. Interf. Sci., 243(2), 280-291. https://doi.org/10.1006/jcis.2001.7796
  5. Allegre, C., Moulin, P., Maisseu, M. and Charbit, F. (2006), "Treatment and reuse of reactive dyeing effluents", J. Membr. Sci., 269(1-2), 15-34. https://doi.org/10.1016/j.memsci.2005.06.014
  6. Aravindhan, R., Fathima, N.N., Rao, J.R. and Nair, B.U. (2007), "Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads", Coll. Surf. A: Physicochem. Eng. A, 299(1-3), 232-238. https://doi.org/10.1016/j.colsurfa.2006.11.045
  7. Benselka-Hadj Abdelkader, N., Bentouami, A., Derriche, Z., Bettahar, N. and de Menorval, L.C. (2011), "Synthesis and characterization of Mg-Fe layer double hydroxides and its application on adsorption of Orange G from aqueous solution", Chem. Eng. J., 169(1-3), 231-238. https://doi.org/10.1016/j.cej.2011.03.019
  8. Bouhamed, F., Elouear, Z. and Bouzid, J. (2012), "Adsorptive removal of copper(II) from aqueous solutions on activated carbon prepared from Tunisian date stones: Equilibrium, kinetics and thermodynamics", J. Taiwan Inst. Chem. Eng., 43(5), 741-749. https://doi.org/10.1016/j.jtice.2012.02.011
  9. Buckley, C. (1992), "Membrane technology for the treatment of dyehouse effluents", Water Sci. Technol., 25(10), 203-209.
  10. Bulut, E., O zacar, M. and Sengil, I.A. (2008), "Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design", Micr. Meso. Mater., 115(3), 234-246. https://doi.org/10.1016/j.micromeso.2008.01.039
  11. Chang, Y., Lai, J.Y. and Lee, D.J. (2016), "Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters: Research updated", Bioresour. Technol., 222, 513-516 https://doi.org/10.1016/j.biortech.2016.09.125
  12. Cheung, C.W., Porter, J.F. and McKay, G. (2000), "Sorption kinetics for the removal of copper and zinc from effluents using bone char", Sep. Purif. Technol., 19(1-2), 55-64. https://doi.org/10.1016/S1383-5866(99)00073-8
  13. Chowdhury, S., Mishra, R., Saha, P. and Kushwaha, P. (2011), "Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk", Desalinat., 265(1-3), 159-168. https://doi.org/10.1016/j.desal.2010.07.047
  14. Clark, T., Bruce, M. and Anderson, S. (1994), "Decolorisation of extraction stage bleach plant effluent by combined hypochlorite oxidation and anaerobic treatment", Water Sci. Technol., 29(5-6), 421-432. https://doi.org/10.2166/wst.1994.0735
  15. Cooper, P. (1993), "Removing colour from dyehouse waste waters-a critical review of technology available", J. Soc. Dyers Color., 109(3), 97-100.
  16. Cortes-Martinez, R., Martinez-Miranda, V., Solache-Rios, M. and Garcia-Sosa, I. (2004), "Evaluation of natural and surfactant-modified zeolites in the removal of cadmium from aqueous solutions", Sep. Sci. Technol., 39(11), 2711-2730. https://doi.org/10.1081/SS-200026766
  17. Crini, G. (2006), "Non-conventional low-cost adsorbents for dye removal: A review", Bioresour. Technol., 97(9), 1061-1085. https://doi.org/10.1016/j.biortech.2005.05.001
  18. Dogan, M. and Alkan, M. (2003), "Adsorption kinetics of methyl violet onto perlite", Chemosphere, 50(4), 517-528. https://doi.org/10.1016/S0045-6535(02)00629-X
  19. Ganna, D., Benedicte, P., Amine, G., Louis-Charles, D. M. and Jerzy, Z. (2016), "Removal of three anionic orange-type dyes and Cr(VI) oxyanion from aqueous solutions onto strongly basic anion-exchange resin. The effect of single-component and competitive adsorption", Coll. Surf. A: Physicochem. Eng. Aspects, 508, 240-250. https://doi.org/10.1016/j.colsurfa.2016.08.063
  20. Gong, R., Ding, Y., Li, M., Yang, C., Liu, H. and Sun, Y. (2005), "Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution", Dyes Pigm., 64(3), 187-192. https://doi.org/10.1016/j.dyepig.2004.05.005
  21. Gupta, V.K., Ali, I., Saini, V.K., Van Gerven, T., Van der Bruggen, B. and Vandecasteele, C. (2005), "Removal of dyes from wastewater using bottom ash", Ind. Eng. Chem. Res., 44(10), 3655-3664. https://doi.org/10.1021/ie0500220
  22. Gupta, V.K., Mittal, A., Gajbe, V. and Mittal, J. (2006), "Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya", Ind. Eng. Chem. Res., 45(4), 1446-1453. https://doi.org/10.1021/ie051111f
  23. Gupta, V.K., Srivastava, S.K. and Mohan, D. (1997), "Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag", Ind. Eng. Chem. Res., 36(6), 2207-2218. https://doi.org/10.1021/ie960442c
  24. Gupta, V.K., Suhas, Ali, I. and Saini, V.K. (2004), "Removal of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste", Ind. Eng. Chem. Res., 43(7), 1740-1747. https://doi.org/10.1021/ie034218g
  25. Hamdaoui, O. (2006), "Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick", J. Hazard. Mater., 135(1-3), 264-273. https://doi.org/10.1016/j.jhazmat.2005.11.062
  26. Ho, Y.S. (2006), "Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods", Water Res., 40(1), 119-125. https://doi.org/10.1016/j.watres.2005.10.040
  27. Ho, Y.S. and McKay, G. (1999), "The sorption of lead(II) ions on peat", Water Res., 33(2), 578-584. https://doi.org/10.1016/S0043-1354(98)00207-3
  28. Hu, J., Song, Z., Chen, L., Yang, H., Li, J. and Richards, R. (2010), "Adsorption Properties of MgO(111) Nanoplates for the Dye Pollutants from Wastewater", J. Chem. Eng. Data, 55(9), 3742-3748. https://doi.org/10.1021/je100274e
  29. Jiraratananon, R., Sungpet, A. and Luangsowan, P. (2000), "Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt", Desalinat., 130(2), 177-183. https://doi.org/10.1016/S0011-9164(00)00085-0
  30. Kadirvelu, K., Karthika, C., Vennilamani, N. and Pattabhi, S. (2005), "Activated carbon from industrial solid waste as an adsorbent for the removal of Rhodamine-B from aqueous solution: Kinetic and equilibrium studies", Chemosphere, 60(8), 1009-1017. https://doi.org/10.1016/j.chemosphere.2005.01.047
  31. Kapdan, I.K. and Kargi, F. (2002), "Simultaneous biodegradation and adsorption of textile dyestuff in an activated sludge unit", Proc. Biochem., 37(9), 973-981. https://doi.org/10.1016/S0032-9592(01)00309-0
  32. Karadag, D., Akgul, E., Tok, S., Erturk, F., Kaya, M.A. and Turan, M. (2007), "Basic and reactive dye removal using natural and modified zeolites", J. Chem. Eng. Data, 52(6), 2436-2441. https://doi.org/10.1021/je7003726
  33. Karcher, S., KornmUller, A. and Jekel, M. (2001), "Screening of commercial sorbents for the removal of reactive dyes", Dyes Pigm., 51(2-3), 111-125. https://doi.org/10.1016/S0143-7208(01)00066-3
  34. Karcher, S., KornmUller, A. and Jekel, M. (2002), "Anion exchange resins for removal of reactive dyes from textile wastewaters", Water Res., 36(19), 4717-4724. https://doi.org/10.1016/S0043-1354(02)00195-1
  35. Khan, M.I., Akhtar, S., Zafar, S., Shaheen, A., Khan, M.I., Luque, R. and Rehama, A.U. (2015a), "Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics", Mater., 8, 4147-4161. https://doi.org/10.3390/ma8074147
  36. Khan, M.I., Mondal, A.N., Chen, C., Pan, J., Emmanuel, K., Wu, L. and Xu, T. (2016c), "Porous BPPO-based membranes modified by aromatic amine for acid recovery", Sep. Purif. Technol., 157, 27-34. https://doi.org/10.1016/j.seppur.2015.11.028
  37. Khan, M.I., Mondal, A.N., Emmanuel, K., Hossain, M.M., Afsar, N.U., Wu, L. and Xu, T. (2016b), "Preparation of pyrrolidinium-based anionexchange membranes for acid recovery via diffusion dialysis", Sep. Sci. Technol., 51, 1881-1890. https://doi.org/10.1080/01496395.2016.1187170
  38. Khan, M.I., Mondal, A.N., Tong, B., Jiang, C., Emmanuel, K., Yang, Z., Wu, L. and Xu, T. (2016d), "Development of BPPO-based anion exchange membranes for electrodialysis desalination applications", Desal., 391, 61-68. https://doi.org/10.1016/j.desal.2015.11.024
  39. Khan, M.I., Wu, L., Hossain, M.M., Pan, J., Ran, J., Mondal. A.N. and Xu, T. (2015b), "Preparation of diffusion dialysis membrane for acid recovery via a phase-inversion method", Membr. Water Treat., 6, 365-378. https://doi.org/10.12989/mwt.2015.6.5.365
  40. Khan, M.I., Wu, L., Mondal, A.N., Yao, Z., Ge, L. and Xu, T. (2016a), "Adsorption of methyl orange from aqueous solution on anion exchange membranes: Adsorption kinetics and equilibrium", Membr. Wat. Treat., 7, 23-38. https://doi.org/10.12989/mwt.2016.7.1.023
  41. Khan, M.I., Zheng, C., Mondal, A.N., Hossain, M.M., Wu, B., Emmanuel, K., Wu, L. and Xu, T. (2017), "Preparation of anion exchange membranes from BPPO and dimethylethanolamine for electrodialysis", Desal., 402, 10-18. https://doi.org/10.1016/j.desal.2016.09.019
  42. Kheira, C., Kahina, B., Zohra, B., Abdelouahab, N. and Ulrich, M.,(2016), "Adsorption of reactive dyes from aqueous solution by dirty bentonite", Appl. Clay Sci., 123, 64-75. https://doi.org/10.1016/j.clay.2016.01.006
  43. Koyuncu, I. (2002), "Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: effects of feed concentration and cross flow velocity", Desalinat., 143(3), 243-253. https://doi.org/10.1016/S0011-9164(02)00263-1
  44. Kuo, S. and Lotse, E. (1973), "Kinetics of phosphate adsorption and desorption by hematite and gibbsite 1", Soil Sci., 116(6), 400-406. https://doi.org/10.1097/00010694-197312000-00002
  45. Lin, J.X., Zhan, S.L., Fang, M.H., Qian, X.Q. and Yang, H. (2008), "Adsorption of basic dye from aqueous solution onto fly ash", J. Environ. Manage., 87(1), 193-200. https://doi.org/10.1016/j.jenvman.2007.01.001
  46. Liu, C.H., Wu, J.S., Chiu, H.C., Suen, S.Y. and Chu, K.H. (2007), "Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers", Water Res., 41(7), 1491-1500. https://doi.org/10.1016/j.watres.2007.01.023
  47. Liu, H. L. and Chiou, Y.R. (2006), "Optimal decolorization efficiency of reactive red 239 by UV/ZnO photocatalytic process", J. Chin. Inst. Chem. Eng., 37(3), 289-298.
  48. Lorenc-Grabowska, E. and Gryglewicz, G. (2007), "Adsorption characteristics of congo red on coal-based mesoporous activated carbon", Dyes Pigm., 74(1), 34-40. https://doi.org/10.1016/j.dyepig.2006.01.027
  49. Mall, I.D., Srivastava, V.C., Agarwal, N.K. and Mishra, I.M. (2005), "Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses", Coll. Surf. A: Physicochem. Eng. A., 264(1-3), 17-28. https://doi.org/10.1016/j.colsurfa.2005.03.027
  50. Namasivayam, C. and Sumithra, S. (2005), "Removal of direct red 12B and methylene blue from water by adsorption onto Fe (III)/Cr (III) hydroxide, an industrial solid waste", J. Environ. Manage., 74(3), 207-215. https://doi.org/10.1016/j.jenvman.2004.08.016
  51. Namasivayam, C., Jeyakumar, R. and Yamuna, R.T. (1994), "Dye removal from wastewater by adsorption on 'waste' Fe(III)/Cr(III) hydroxide", Waste Manage., 14(7), 643-648. https://doi.org/10.1016/0956-053X(94)90036-1
  52. Netpradit, S., Thiravetyan, P. and Towprayoon, S. (2003), "Application of 'waste' metal hydroxide sludge for adsorption of azo reactive dyes", Water Res., 37(4), 763-772. https://doi.org/10.1016/S0043-1354(02)00375-5
  53. Pala, A. and Tokat, E. (2002), "Color removal from cotton textile industry wastewater in an activated sludge system with various additives", Water Res., 36(11), 2920-2925. https://doi.org/10.1016/S0043-1354(01)00529-2
  54. Pelekani, C. and Snoeyink, V.L. (1999), "Competitive adsorption in natural water: role of activated carbon pore size", Water Res., 33(5), 1209-1219. https://doi.org/10.1016/S0043-1354(98)00329-7
  55. Plazinski, W., Rudzinski, W. and Plazinska, A. (2009), "Theoretical models of sorption kinetics including a surface reaction mechanism: A review", Adv. Coll. Interf. Sci., 152(1-2), 2-13. https://doi.org/10.1016/j.cis.2009.07.009
  56. Robinson, T., McMullan, G., Marchant, R. and Nigam, P. (2001), "Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative", Bioresour. Technol., 77(3), 247-255. https://doi.org/10.1016/S0960-8524(00)00080-8
  57. Silvia, P.D.M., Blanco, F.B.S., Aparecido, N.M., Fernando, R.E.Q., Pricila, M.A.D.K. and Carlos, E.B. (2017), "Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent", Chem. Eng. J., 307, 466-475 https://doi.org/10.1016/j.cej.2016.08.104
  58. Solozhenko, E.G., Soboleva, N.M. and Goncharuk, V.V. (1995), "Decolourization of azodye solutions by Fenton's oxidation", Water Res., 29(9), 2206-2210. https://doi.org/10.1016/0043-1354(95)00042-J
  59. Treffry-Goatley, K., Buckley, C.A. and Groves, G.R. (1983), "Reverse osmosis treatment and reuse of textile dyehouse effluents", Desalinat., 47(1-3), 313-320. https://doi.org/10.1016/0011-9164(83)87086-6
  60. Tutem, E., Apak, R. and Unal, C .F. (1998), "Adsorptive removal of chlorophenols from water by bituminous shale", Water Res., 32(8), 2315-2324. https://doi.org/10.1016/S0043-1354(97)00476-4
  61. Vimonses, V., Lei, S., Jin, B., Chow, C.W.K. and Saint, C. (2009), "Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials", Chem. Eng. J., 148(2-3), 354-364. https://doi.org/10.1016/j.cej.2008.09.009
  62. Zhang, J., Zhou, Q. and Ou, L. (2012), "Kinetic, isotherm, and thermodynamic studies of the adsorption of methyl orange from aqueous solution by chitosan/alumina composite", J. Chem. Eng. Data, 57(2), 412-419. https://doi.org/10.1021/je2009945

Cited by

  1. Vanadium(V) removal from aqueous solutions using a new composite adsorbent (BAZLSC): Optimization by response surface methodology vol.6, pp.3, 2017, https://doi.org/10.12989/aer.2017.6.3.173
  2. Preparation of Nano-SiO 2 /Al 2 O 3 /ZnO-Blended PVDF Cation-Exchange Membranes with Improved Membrane Permselectivity and Oxidation Stability vol.11, pp.12, 2017, https://doi.org/10.3390/ma11122465
  3. Isotherm, kinetic and thermodynamic studies of dye removal from wastewater solution using leach waste materials vol.8, pp.1, 2017, https://doi.org/10.12989/aer.2019.8.1.023
  4. Removal of reactive black 5 dye by using polyoxometalate-membrane vol.12, pp.1, 2021, https://doi.org/10.12989/mwt.2021.12.1.023
  5. Adsorption removal of Congo red onto L-cysteine/rGO/PANI nanocomposite: equilibrium, kinetics and thermodynamic studies vol.15, pp.1, 2021, https://doi.org/10.1080/16583655.2021.1876351
  6. Synthesis of DMEA-Grafted Anion Exchange Membrane for Adsorptive Discharge of Methyl Orange from Wastewaters vol.11, pp.3, 2017, https://doi.org/10.3390/membranes11030166