DOI QR코드

DOI QR Code

Enhanced performance of thin-film nanocomposite RO/NWF membrane by adding ZnO nanospheres in aqueous phase during interfacial polymerization process

  • Li, Hongbin (School of Textiles Engineering, Henan Engineering Laboratory of New Textiles Development, Henan Institute of Engineering) ;
  • Shi, Wenying (School of Textiles Engineering, Henan Engineering Laboratory of New Textiles Development, Henan Institute of Engineering) ;
  • Su, Yuheng (School of Textiles Engineering, Henan Engineering Laboratory of New Textiles Development, Henan Institute of Engineering) ;
  • Hou, Hongxiang (Xinxiang Xinli Purification Technology Co., Ltd.) ;
  • Du, Qiyun (State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University) ;
  • Zhang, Haixia (School of Textiles Engineering, Henan Engineering Laboratory of New Textiles Development, Henan Institute of Engineering) ;
  • Qin, Xiaohong (School of Textiles Engineering, Henan Engineering Laboratory of New Textiles Development, Henan Institute of Engineering)
  • Received : 2016.08.09
  • Accepted : 2016.12.13
  • Published : 2017.05.25

Abstract

A novel thin-film nanocomposite (TFN) reverse osmosis (RO)/non-woven fabric (NWF) membrane was prepared by adding zinc oxide (ZnO) nanospheres ($30{\pm}10nm$) during the interfacial polymerization process of m-phenylenediamine (MPD) and trimesoyl chloride (TMC) on self-made polysulfone (PSF) membrane/polyester (PET) non-woven fabric support. The improved performance of TFN RO membrane was verified in terms of water contact angle (WCA), water flux, salt rejection, antifouling properties and chlorine resistance. The results showed that the WCA value of TFN RO surface had a continuous decrease with the increasing of ZnO content in MPD aqueous solution. The water flux of composite TFN RO membranes acquired a remarkable increase with a stable high solute rejection (94.5 %) in $1g{\cdot}L^{-1}$ NaCl aqueous solution under the optimized addition amount of ZnO (1 wt%). The continuous testing of membrane separation performance after the immersion in sodium hypochlorite solution indicated that the introduction of ZnO nanospheres also dramatically enhanced the antifouling properties and the chlorine resistance of composite RO membranes.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Al-Juboori, R.A. and Yusaf, T. (2012), "Biofouling in RO system: mechanisms, monitoring and controlling", Desalinat., 302, 1-23. https://doi.org/10.1016/j.desal.2012.06.016
  2. Azari, S., Zou, L.D. and Cornelissen, E. (2014), "Assessing the effect of surface modification of polyamide ROmembrane by l-DOPA on the short range physiochemical interactions with biopolymer fouling on the membrane", Coll. Surf., B, 120, 222-228. https://doi.org/10.1016/j.colsurfb.2014.03.028
  3. Bai, X., Zhang, Y.T., Wang, H., Zhang, H.Q. and Liu, J.D. (2013), "Study on the modification of positively charged composite nanofiltration membrane by $TiO_2$ nanoparticles", Desalinat., 313, 57-65. https://doi.org/10.1016/j.desal.2012.12.006
  4. Bao, M.R., Zhu, G.R., Wang, L., Wang, M. and Gao, C.J. (2013) , "Preparation of monodispersed spherical mesoporous nanosilica-polyamide thin film composite reverse osmosis membranes via interfacial polymerization", Desalinat., 309, 261-266. https://doi.org/10.1016/j.desal.2012.10.028
  5. Barona, G.N.B., Lim, J. and Jung, B. (2012), "High performance thin film composite polyamide reverse osmosis membrane prepared via m-phenylenediamine and 2,2'-benzidinedisulfonic acid", Desalinat., 291, 69-77. https://doi.org/10.1016/j.desal.2012.02.001
  6. Ben-Sasson, M., Lu, X.L., Bar-Zeev, E., Zodrow, K.R., Nejati, S., Qi, G.G. and Giannelis, E.P. (2014), "In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation", Water Res., 62, 260-270. https://doi.org/10.1016/j.watres.2014.05.049
  7. Bera, A., Gol, R. M., Chatterjee, S. and Jewrajka, S.K. (2015), "PEGylation and incorporation of triazine ring into thin film composite reverse osmosis membranes for enhancement of anti-organic and antibiofouling properties", Desalinat., 360, 108-117. https://doi.org/10.1016/j.desal.2015.01.018
  8. Buch, P.R., Mohan, D.J. and Reddy, A.V.R. (2008), "Preparation, characterization and chlorine stability of aromatic-cycloaliphatic polyamide thin film composite membranes", J. Membr. Sci., 309, 36-44. https://doi.org/10.1016/j.memsci.2007.10.004
  9. Cai, Y.Y., Chen, X.F., Wang, Y., Qiu, M.H. and Fan, Y.Q. (2015), "Fabrication of palladium-titania nanofiltration membranes via a colloidal sol-gel process", Microporous Mesoporous Mater., 201, 202-209. https://doi.org/10.1016/j.micromeso.2014.08.061
  10. Chae, H.R., Lee, J., Lee, C.H., Kim, I.C. and Park, P.K. (2015), "Graphene oxide-embedded thin-film composite reverse osmosis membrane with highflux, anti-biofouling, and chlorine resistance", J. Membr. Sci., 483, 128-135. https://doi.org/10.1016/j.memsci.2015.02.045
  11. Cheng, Q.B., Zheng, Y.P., Yu, S.C., Zhu, H.W., Peng, X.Y., Liu, J., Liu, J.Q., Liu, M.H. and Gao, C.J. (2013), "Surface modification of a commercial thin-film composite polyamide reverse osmosis membrane through graft polymerization of N-isopropylacrylamide followed by acrylic acid", J. Membr. Sci., 447, 236-245. https://doi.org/10.1016/j.memsci.2013.07.025
  12. Choi, W., Choi, J., Bang, J. and Lee, J. H. (2013), "Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications", ACS Appl. Mater. Interf., 5, 12510-12519. https://doi.org/10.1021/am403790s
  13. Fathizadeh, M., Aroujalian, A. and Raisi, A. (2011), "Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process", J. Membr. Sci., 375, 88-95. https://doi.org/10.1016/j.memsci.2011.03.017
  14. Gao, X.L., Wang, H.Z., Wang, J., Huang, X. and Gao, C.J. (2013), "Surface-modified PSf UF membrane by UV-assisted graft polymerization of capsaicin derivative moiety for fouling and bacterial resistance", J. Membr. Sci., 445, 146-155. https://doi.org/10.1016/j.memsci.2013.05.026
  15. Glater, J., Hong, S.K. and Elimelech, M. (1994), "The search for a chlorine-resistant reverse osmosis membrane", Desalinat., 95, 325-345. https://doi.org/10.1016/0011-9164(94)00068-9
  16. Gorgojo, P. and Jimenez-Solomon, M.F. (2014), "Polyamide thin film composite membranes on crosslinked polyimide supports: Improvement of RO performance via activating solvent", Desalinat., 344, 181-188. https://doi.org/10.1016/j.desal.2014.02.009
  17. Gu, J.E., Lee, J.S., Park, S.H., Kim, I.T., Chan, E.P., Kwon, Y.N. and Lee, J.H. (2015), "Tailoring interlayer structure of molecular layer-by-layer assembled polyamide membranes for high separation performance", Appl. Surf. Sci., 356, 659-667. https://doi.org/10.1016/j.apsusc.2015.08.119
  18. Han, R.L. (2013), "Formation and characterization of (melamine-TMC) based thinfilm composite NF membranes for improved thermal and chlorine resistances", J. Membr. Sci., 425, 176-181.
  19. Hong, S.P., Kim, I.C., Tak, T. and Kwon, Y.N. (2013), "Interfacially synthesized chlorine-resistant polyimide thinfilm composite (TFC) reverse osmosis (RO) membranes", Desalinat., 309, 18-26. https://doi.org/10.1016/j.desal.2012.09.025
  20. Hurwitz, G., Guillen, G.R. and Hoek, E.M.V. (2010) , "Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements", J. Membr. Sci., 349, 349-357. https://doi.org/10.1016/j.memsci.2009.11.063
  21. Karkhanechi, H., Takagi, R. and Matsuyama, H. (2014), "Enhanced antibiofouling of RO membranes via polydopamine coating and polyzwitterion mmobilization", Desalinat., 337, 23-30. https://doi.org/10.1016/j.desal.2014.01.007
  22. Kim, S.G., Chun, J.H., Chun, B.H. and Kim, S.H. (2013), "Preparation, characterization and performance of poly (aylene ether sulfone)/modified silica nanocomposite reverse osmosis membrane for seawater desalination", Desalinat., 325, 76-83. https://doi.org/10.1016/j.desal.2013.06.017
  23. Konagaya, S. and Watanabe, O. (2000), "Influence of chemical structure of isophthaloyl dichloride and aliphatic, cycloaliphatic, and aromatic diamine compound polyamides on their chlorine resistance", J. Appl. Polym. Sci., 76, 201-207. https://doi.org/10.1002/(SICI)1097-4628(20000411)76:2<201::AID-APP9>3.0.CO;2-8
  24. Lee, H.S., Im, S.J. and Kim, J.H. (2008), "Polyamide thin-film nanofiltration membranes containing $TiO_2$ nanoparticles", Desalinat., 219, 48-56. https://doi.org/10.1016/j.desal.2007.06.003
  25. Liu, B.C., Chen, C., Zhang, W., Crittenden, J. and Chen, Y.S. (2012), "Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additives on properties and performance", Desalinat., 307, 26-33. https://doi.org/10.1016/j.desal.2012.07.036
  26. Liu, M.H., Chen, Q., Wang, L.Z., Yu, S.C. and Gao, C.J. (2015), "Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA)", Desalinat., 367, 11-20. https://doi.org/10.1016/j.desal.2015.03.028
  27. Ma, W., Soroush, A., Luong, T.V.A., Brennan, G., Rahaman, M.S., Asadishad, B. and Tufenkji, N. (2016), "Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film composite reverse osmosis membrane for biofouling mitigation", Water Res., 99, 188-199. https://doi.org/10.1016/j.watres.2016.04.042
  28. Ni, L., Meng, J. Q., Li, X.G. and Zhang, Y.F. (2014), "Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement", J. Membr. Sci., 451, 205-215. https://doi.org/10.1016/j.memsci.2013.09.040
  29. Nikkola, J., Liu, X., MariRaulio, Y.L., Alakomi, H.L., Wei, J. and Tang, C.Y. (2013), "Surface modification of thin film composite RO membrane for enhanced anti-biofouling performance", J. Membr. Sci., 444, 192-200. https://doi.org/10.1016/j.memsci.2013.05.032
  30. Peyki, A., Rahimpour, A. and Jahanshahi, M. (2015), "Polyamide thin film composite membranes on crosslinked polyimide supports: Improvement of RO performance via activating solvent", Desalinat., 368, 152-158. https://doi.org/10.1016/j.desal.2014.05.025
  31. Peyravi, M., Jahanshahi, M., Rahimpour, A., Javadi, A. and Hajavi, S. (2014), "Novel thin film nanocomposite membranes incorporated with functionalized $TiO_2$ nanoparticles for organic solvent nanofiltration", Chem. Eng. J., 241, 155-166. https://doi.org/10.1016/j.cej.2013.12.024
  32. Pourjafar, S., Jahanshahi, M. and Rahimpour, A. (2013), "Optimization of $TiO_2$ modified poly(vinyl alcohol) thin film composite nanofiltration membranes using Taguchi method", Desalinat., 315, 107-114. https://doi.org/10.1016/j.desal.2012.08.029
  33. Rajaeian, B., Rahimpour, A., Tade, M.O. and Liu, S.M. (2013), "Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with $TiO_2$ nanoparticles", Desalinat., 313, 176-188. https://doi.org/10.1016/j.desal.2012.12.012
  34. Rana, H.H., Saha, N.K. and Jewrajka, S.K. (2015), "Low fouling and improved chlorine resistant thin film composite reverse osmosis membranes by cerium(IV)/polyvinyl alcohol mediated surface modification", Desalinat., 357, 93-103. https://doi.org/10.1016/j.desal.2014.11.013
  35. Sabir, A., Islam, A., Shafiq, M., Shafeeq, A., Butt, M.T.Z., Ahmad, N.M., Sanaullah, K. and Jamil, T. (2015), "Novel polymer matrix composite membrane doped with fumed silica particles for reverse osmosis desalination", Desalinat., 368, 159-170. https://doi.org/10.1016/j.desal.2014.12.041
  36. Sabir, A., Shafiq, M., AfsheenSarwar, A., Dilshad, M.R., Shafeeq, A., Butt, M.T.Z. and Jamil, T. (2015), "Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis", Carbohydr. Polym., 132, 589-597. https://doi.org/10.1016/j.carbpol.2015.06.035
  37. Safarpour, M., Khataee, A. and Vatanpour, V. (2015), "Thinfilm nanocomposite reverse osmosis membrane modified by reduced graphene oxide/$TiO_2$ with improved desalination performance", J. Membr. Sci., 489, 43-54. https://doi.org/10.1016/j.memsci.2015.04.010
  38. Shi, Q., Meng, J.Q., Xu, R.S., Du, X.L. and Zhang, Y.F. (2013), "Synthesis of hydrophilic polysulfone membranes having antifouling and boron adsorption properties via blending with an amphiphilic graft glycopolymer", J. Membr. Sci., 444, 50-59. https://doi.org/10.1016/j.memsci.2013.05.014
  39. Shin, D.H., Kim, N. and Lee, Y.T. (2011), "Modification to the polyamide TFC RO membranes for improvement of chlorine-resistance", J. Membr. Sci., 376, 302-311. https://doi.org/10.1016/j.memsci.2011.04.045
  40. Shintani, T., Matsuyama, H. and Kurata, N. (2007), "Development of a chlorine-resistant polyamide reverse osmosis membrane", Desalinat., 207, 340-348. https://doi.org/10.1016/j.desal.2006.08.009
  41. Stan, M., Popa, A., Toloman, D., Dehelean, A., Lung, I. and Katona, G. (2015), "Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts", Mater. Sci. Semicond. Process., 39, 23-29. https://doi.org/10.1016/j.mssp.2015.04.038
  42. Wang, C.L., Such, G.K., Widjaya, A., Lomas, H., Stevens, G., Caruso, F. and Kentish, S.E. (2012), "Click poly(ethylene glycol) multilayers on RO membranes: Fouling reduction and membrane characterization", J. Membr. Sci., 409-410, 9-15. https://doi.org/10.1016/j.memsci.2012.02.049
  43. Wang, J., Wang, Z., Wang, J.X. and Wang, S.C. (2015), "Improving the water flux and bio-fouling resistance of reverse osmosis (RO) membrane through surface modification by zwitterionic polymer", J. Membr. Sci., 493, 188-199. https://doi.org/10.1016/j.memsci.2015.06.036
  44. Wei, X.Y., Wang, Z., Chen, J., Wang, J.X. and Wang, S.C. (2010), "A novel method of surface modification on thin-film-composite reverse osmosis membrane by grafting hydantoin derivative", J. Membr. Sci., 346, 152-162. https://doi.org/10.1016/j.memsci.2009.09.032
  45. Wei, X.Y., Wang, Z., Zhang, Z., Wang, J.X. and Wang, S.C. (2010), "Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5,5- dimethylhydantoin", J. Membr. Sci., 351, 222-233. https://doi.org/10.1016/j.memsci.2010.01.054
  46. Wu, J.H., Wang, Z., Yan, W.T., Wang, Y., Wang, J.X. and Wang, S.C. (2015), "Improving the hydrophilicity and fouling resistance of RO membranes by surface immobilization of PVP based on a metal-polyphenol precursor layer", J. Membr. Sci., 496, 58-69. https://doi.org/10.1016/j.memsci.2015.08.044
  47. Xu, J., Wang, Z., Yu, L.L., Wang, J.X. and Wang, S.C. (2013), "A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties", J. Membr. Sci., 435, 80-91. https://doi.org/10.1016/j.memsci.2013.02.010
  48. Yamamoto, K., Ohshita, J., Mizumo, T., Kanezashi, M. and Tsuru, T. (2015), "Preparation of hydroxyl group containing bridged organosilica membranes for water desalination", Sep. Purif. Technol., 156, 396-402. https://doi.org/10.1016/j.seppur.2015.10.028
  49. Yan, H., Miao, X.P., Xu, J., Pan, G.Y., Zhang, Y., Shi, Y.T., Guo, M. and Liu, Y.Q. (2015), "The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes", J. Membr. Sci., 475, 504-510. https://doi.org/10.1016/j.memsci.2014.10.052
  50. Yan, W.T., Wang, Z., Wu, J.H., Zhao, S., Wang, J.X. and Wang, S.C. (2016), "Enhancing the flux of brackish water TFC RO membrane by improving support surface porosity via a secondary pore-forming method", J. Membr. Sci., 498, 227-241. https://doi.org/10.1016/j.memsci.2015.10.029
  51. Yu, S.C., Liu, M.H., Lu, Z.H., Zhou, Y. and Gao, C.J. (2009), "Aromatic-cycloaliphatic polyamide thin-film composite membrane with improved chlorine resistance prepared fromm-phenylenediamine-4-methyl and cyclohexane-1, 3, 5-tricarbonyl chloride", J. Membr. Sci., 344, 155-164. https://doi.org/10.1016/j.memsci.2009.07.046
  52. Yu, S.C., Yao, G.H., Dong, B.Y., Zhu, H.W., Peng, X.Y., Liu, J., Liu, M.H. and Gao, C. J. (2013), "Improving fouling resistance of thin-film composite polyamide reverse osmosis membrane by coating natural hydrophilic polymer sericin", Sep. Purif. Technol., 118, 285-293. https://doi.org/10.1016/j.seppur.2013.07.018
  53. Zhang, T.L., Zhu, C.Y., Ma, H.M., Li, R.Y., Dong, B.G., Liu, Y.F. and Li, S.Z. (2014), "Surface modification of APA-TFC membrane with quaternary ammonium cation and salicylaldehyde to improve performance", J. Membr. Sci., 457, 88-94. https://doi.org/10.1016/j.memsci.2014.01.024
  54. Zhang, Z., Wang, Z., Wang, J.X. and Wang, S.C. (2013), "Enhancing chlorine resistances and anti-biofouling properties of commercial aromatic polyamide reverse osmosis membranes by grafting 3-allyl-5,5-dimethylhydantoin and N,N'-Methylenebis(acrylamide)", Desalinat., 309, 187-196. https://doi.org/10.1016/j.desal.2012.10.019
  55. Zhou, C.M., Ye, D.M., Jia, H.H., Yu, S.C., Liu, M.H. and Gao, C.J. (2014), "Surface mineralization of commercial thin-film composite polyamide membrane by depositing barium sulfate for improved reverse osmosis performance and antifouling property", Desalinat., 351, 228-235. https://doi.org/10.1016/j.desal.2014.07.040
  56. Zou, L., Vidalis, I., Steele, D., Michelmore, A., Low, S.P. and Verberk, J.Q.J.C. (2011), "Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling", J. Membr. Sci., 369, 420-428. https://doi.org/10.1016/j.memsci.2010.12.023

Cited by

  1. Preparation of Nano-SiO 2 /Al 2 O 3 /ZnO-Blended PVDF Cation-Exchange Membranes with Improved Membrane Permselectivity and Oxidation Stability vol.11, pp.12, 2017, https://doi.org/10.3390/ma11122465