References
- Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408: 239-47. https://doi.org/10.1038/35041687
- Geiszt M, Kopp JB, Varnai P, Leto TL. Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci U S A 2000; 97: 8010-4. https://doi.org/10.1073/pnas.130135897
- Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. general properties and effect of hyperbaric oxygen. Biochem J 1973; 134: 707-16. https://doi.org/10.1042/bj1340707
- Chien CT, Lee PH, Chen CF, Ma MC, Lai MK, Hsu SM. De novo demonstration and co-localization of freeradical production and apoptosis formation in rat kidney subjected to ischemia/reperfusion. J Am Soc Nephrol 2001; 12: 973-82.
- Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ 2015; 22: 377-88. https://doi.org/10.1038/cdd.2014.150
- Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell 2010; 40: 280-93. https://doi.org/10.1016/j.molcel.2010.09.023
- Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 2007; 14: 146-57. https://doi.org/10.1038/sj.cdd.4401936
- Filomeni G, Desideri E, Cardaci S, Rotilio G, Ciriolo MR. Under the ROS...thiol network is the principal suspect for autophagy commitment. Autophagy 2010; 6: 999-1005. https://doi.org/10.4161/auto.6.7.12754
- Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417: 1-13. https://doi.org/10.1042/BJ20081386
- Tesauro M, Thompson WC, Moss J. Effect of staurosporineinduced apoptosis on endothelial nitric oxide synthase in transfected COS-7 cells and primary endothelial cells. Cell Death Differ 2006; 13: 597-606. https://doi.org/10.1038/sj.cdd.4401770
- Xu JJ, Wang YL. Propofol attenuation of hydrogen peroxide-mediated oxidative stress and apoptosis in cultured cardiomyocytes involves haeme oxygenase-1. Eur J Anaesthesiol 2008; 25: 395-402. https://doi.org/10.1017/S0265021508003542
- Kobayashi K, Yoshino F, Takahashi SS, Todoki K, Maehata Y, Komatsu T, et al. Direct assessments of the antioxidant effects of propofol medium chain triglyceride/long chain triglyceride on the brain of stroke-prone spontaneously hypertensive rats using electron spin resonance spectroscopy. Anesthesiology 2008; 109: 426-35. https://doi.org/10.1097/ALN.0b013e318182a903
- Ansley DM, Lee J, Godin DV, Garnett ME, Qayumi AK. Propofol enhances red cell antioxidant capacity in swine and humans. Can J Anaesth 1998; 45: 233-9. https://doi.org/10.1007/BF03012908
- Stadnicka A, Marinovic J, Ljubkovic M, Bienengraeber MW, Bosnjak ZJ. Volatile anesthetic-induced cardiac preconditioning. J Anesth 2007; 21: 212-9. https://doi.org/10.1007/s00540-006-0486-6
- Liu KX, Rinne T, He W, Wang F, Xia Z. Propofol attenuates intestinal mucosa injury induced by intestinal ischemia-reperfusion in the rat. Can J Anaesth 2007; 54: 366-74. https://doi.org/10.1007/BF03022659
- Kamada N, Kanaya N, Hirata N, Kimura S, Namiki A. Cardioprotective effects of propofol in isolated ischemiareperfused guinea pig hearts: Role of KATP channels and GSK-3beta. Can J Anaesth 2008; 55: 595-605. https://doi.org/10.1007/BF03021433
- Zaugg M, Lucchinetti E, Uecker M, Pasch T, Schaub MC. Anaesthetics and cardiac preconditioning. part I. signalling and cytoprotective mechanisms. Br J Anaesth 2003; 91: 551-65. https://doi.org/10.1093/bja/aeg205
- Das M, Das DK. Molecular mechanism of preconditioning. IUBMB Life 2008; 60: 199-203. https://doi.org/10.1002/iub.31
- Assad AR, Delou JM, Fonseca LM, Villela NR, Nascimento JH, Vercosa N, et al. The role of KATP channels on propofol preconditioning in a cellular model of renal ischemia-reperfusion. Anesth Analg 2009; 109: 1486-92. https://doi.org/10.1213/ANE.0b013e3181b76396
- Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science 1988; 240: 1302-9. https://doi.org/10.1126/science.3287616
- Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 2007; 292: C670-86. https://doi.org/10.1152/ajpcell.00213.2006
- Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J 2003; 17: 1195-214. https://doi.org/10.1096/fj.02-0752rev
- Cadet J, Delatour T, Douki T, Gasparutto D, Pouget JP, Ravanat JL, et al. Hydroxyl radicals and DNA base damage. Mutat Res 1999; 424: 9-21. https://doi.org/10.1016/S0027-5107(99)00004-4
- Wang H, Xue Z, Wang Q, Feng X, Shen Z. Propofol protects hepatic L02 cells from hydrogen peroxide-induced apoptosis via activation of extracellular signal-regulated kinases pathway. Anesth Analg 2008; 107: 534-40. https://doi.org/10.1213/ane.0b013e3181770be9
- Wu XJ, Zheng YJ, Cui YY, Zhu L, Lu Y, Chen HZ. Propofol attenuates oxidative stress-induced PC12 cell injury via p38 MAP kinase dependent pathway. Acta Pharmacol Sin 2007; 28: 1123-8. https://doi.org/10.1111/j.1745-7254.2007.00610.x
- Li Volti G, Basile F, Murabito P, Galvano F, Di Giacomo C, Gazzolo D, et al. Antioxidant properties of anesthetics: The biochemist, the surgeon and the anesthetist. Clin Ter 2008; 159: 463-9.
- Li Volti G, Sorrenti V, Murabito P, Galvano F, Veroux M, Gullo A, et al. Pharmacological induction of heme oxygenase-1 inhibits iNOS and oxidative stress in renal ischemia-reperfusion injury. Transplant Proc 2007; 39: 2986-91. https://doi.org/10.1016/j.transproceed.2007.09.047
- Scapagnini G, Foresti R, Calabrese V, Giuffrida Stella AM, Green CJ, Motterlini R. Caffeic acid phenethyl ester and curcumin: A novel class of heme oxygenase-1 inducers. Mol Pharmacol 2002; 61: 554-61. https://doi.org/10.1124/mol.61.3.554
- Acquaviva R, Campisi A, Murabito P, Raciti G, Avola R, Mangiameli S, et al. Propofol attenuates peroxynitritemediated DNA damage and apoptosis in cultured astrocytes: An alternative protective mechanism. Anesthesiology 2004; 101: 1363-71.
- Hayashi K, Dan K, Goto F, Tshuchihashi N, Nomura Y, Fujioka M, et al. The autophagy pathway maintained signaling crosstalk with the Keap1-Nrf2 system through p62 in auditory cells under oxidative stress. Cell Signal 2015; 27: 382-93. https://doi.org/10.1016/j.cellsig.2014.11.024
- Huang Q, Wu YT, Tan HL, Ong CN, Shen HM. A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ 2009; 16: 264-77. https://doi.org/10.1038/cdd.2008.151
- Huang Q, Shen HM. To die or to live: The dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy 2009; 5: 273-6. https://doi.org/10.4161/auto.5.2.7640
- Glick D, Barth S, Macleod KF. Autophagy: Cellular and molecular mechanisms. J Pathol 2010; 221: 3-12. https://doi.org/10.1002/path.2697
- Mori F, Tanji K, Odagiri S, Toyoshima Y, Yoshida M, Kakita A, et al. Autophagy-related proteins (p62, NBR1 and LC3) in intranuclear inclusions in neurodegenerative diseases. Neurosci Lett 2012; 522: 134-8. https://doi.org/10.1016/j.neulet.2012.06.026
- Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature 2004; 432: 1032-6. https://doi.org/10.1038/nature03029
- Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 2005; 169: 425-34. https://doi.org/10.1083/jcb.200412022
- Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009; 461: 654-8. https://doi.org/10.1038/nature08455
Cited by
- The protective effect of propofol on ionizing radiation-induced hematopoietic system damage in mice vol.9, pp.62, 2017, https://doi.org/10.1039/c9ra07262d
- Unusual mtDNA Control Region Length Heteroplasmy in the COS-7 Cell Line vol.11, pp.6, 2020, https://doi.org/10.3390/genes11060607
- Propofol protects against oxygen/glucose deprivation-induced cell injury via gap junction inhibition in astrocytes vol.22, pp.4, 2017, https://doi.org/10.3892/mmr.2020.11357