DOI QR코드

DOI QR Code

Skeletal and dentoalveolar changes after miniscrew-assisted rapid palatal expansion in young adults: A cone-beam computed tomography study

  • Park, Jung Jin (Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Yonsei University) ;
  • Park, Young-Chel (Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Yonsei University) ;
  • Lee, Kee-Joon (Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Yonsei University) ;
  • Cha, Jung-Yul (Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Yonsei University) ;
  • Tahk, Ji Hyun (Graduate of Harvard School of Dental Medicine, Harvard University) ;
  • Choi, Yoon Jeong (Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Yonsei University)
  • Received : 2016.05.11
  • Accepted : 2016.07.13
  • Published : 2017.03.25

Abstract

Objective: The aim of this study was to evaluate the skeletal and dentoalveolar changes after miniscrew-assisted rapid palatal expansion (MARPE) in young adults by cone-beam computed tomography (CBCT). Methods: This retrospective study included 14 patients (mean age, 20.1 years; range, 16-26 years) with maxillary transverse deficiency treated with MARPE. Skeletal and dentoalveolar changes were evaluated using CBCT images acquired before and after expansion. Statistical analyses were performed using paired t-test or Wilcoxon signed-rank test according to normality of the data. Results: The midpalatal suture was separated, and the maxilla exhibited statistically significant lateral movement (p < 0.05) after MARPE. Some of the landmarks had shifted forwards or upwards by a clinically irrelevant distance of less than 1 mm. The amount of expansion decreased in the superior direction, with values of 5.5, 3.2, 2.0, and 0.8 mm at the crown, cementoenamel junction, maxillary basal bone, and zygomatic arch levels, respectively (p < 0.05). The buccal bone thickness and height of the alveolar crest had decreased by 0.6-1.1 mm and 1.7-2.2 mm, respectively, with the premolars and molars exhibiting buccal tipping of $1.1^{\circ}-2.9^{\circ}$. Conclusions: Our results indicate that MARPE is an effective method for the correction of maxillary transverse deficiency without surgery in young adults.

Keywords

References

  1. da Silva Filho OG, Montes LA, Torelly LF. Rapid maxillary expansion in the deciduous and mixed dentition evaluated through posteroanterior cephalometric analysis. Am J Orthod Dentofacial Orthop 1995;107:268-75. https://doi.org/10.1016/S0889-5406(95)70142-7
  2. Haas AJ. Palatal expansion: just the beginning of dentofacial orthopedics. Am J Orthod 1970;57:219-55. https://doi.org/10.1016/0002-9416(70)90241-1
  3. Shetty V, Caridad JM, Caputo AA, Chaconas SJ. Biomechanical rationale for surgical-orthodontic expansion of the adult maxilla. J Oral Maxillofac Surg 1994;52:742-9; discussion 750-1. https://doi.org/10.1016/0278-2391(94)90492-8
  4. Asscherickx K, Govaerts E, Aerts J, Vande Vannet B. Maxillary changes with bone-borne surgically assisted rapid palatal expansion: A prospective study. Am J Orthod Dentofacial Orthop 2016;149:374-83. https://doi.org/10.1016/j.ajodo.2015.08.018
  5. Williams BJ, Currimbhoy S, Silva A, O'Ryan FS. Complications following surgically assisted rapid palatal expansion: a retrospective cohort study. J Oral Maxillofac Surg 2012;70:2394-402. https://doi.org/10.1016/j.joms.2011.09.050
  6. Persson M, Thilander B. Palatal suture closure in man from 15 to 35 years of age. Am J Orthod 1977;72:42-52. https://doi.org/10.1016/0002-9416(77)90123-3
  7. Stuart DA, Wiltshire WA. Rapid palatal expansion in the young adult: time for a paradigm shift? J Can Dent Assoc 2003;69:374-7.
  8. Rungcharassaeng K, Caruso JM, Kan JY, Kim J, Taylor G. Factors affecting buccal bone changes of maxillary posterior teeth after rapid maxillary expansion. Am J Orthod Dentofacial Orthop 2007;132:428.e1-8.
  9. Capelozza Filho L, Cardoso Neto J, da Silva Filho OG, Ursi WJ. Non-surgically assisted rapid maxillary expansion in adults. Int J Adult Orthodon Orthognath Surg 1996;11:57-66; discussion 67-70.
  10. Thilander B, Nyman S, Karring T, Magnusson I. Bone regeneration in alveolar bone dehiscences related to orthodontic tooth movements. Eur J Orthod 1983;5:105-14. https://doi.org/10.1093/ejo/5.2.105
  11. Ramieri GA, Spada MC, Austa M, Bianchi SD, Berrone S. Transverse maxillary distraction with a bone-anchored appliance: dento-periodontal effects and clinical and radiological results. Int J Oral Maxillofac Surg 2005;34:357-63. https://doi.org/10.1016/j.ijom.2004.10.011
  12. Lee KJ, Park YC, Park JY, Hwang WS. Miniscrewassisted nonsurgical palatal expansion before orthognathic surgery for a patient with severe mandibular prognathism. Am J Orthod Dentofacial Orthop 2010;137:830-9. https://doi.org/10.1016/j.ajodo.2007.10.065
  13. Mah JK, Danforth RA, Bumann A, Hatcher D. Radiation absorbed in maxillofacial imaging with a new dental computed tomography device. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;96:508-13. https://doi.org/10.1016/S1079-2104(03)00350-0
  14. Akyalcin S, Schaefer JS, English JD, Stephens CR, Winkelmann S. A cone-beam computed tomography evaluation of buccal bone thickness following maxillary expansion. Imaging Sci Dent 2013;43:85-90. https://doi.org/10.5624/isd.2013.43.2.85
  15. Christie KF, Boucher N, Chung CH. Effects of bonded rapid palatal expansion on the transverse dimensions of the maxilla: a cone-beam computed tomography study. Am J Orthod Dentofacial Orthop 2010;137(4 Suppl):S79-85. https://doi.org/10.1016/j.ajodo.2008.11.024
  16. Kartalian A, Gohl E, Adamian M, Enciso R. Conebeam computerized tomography evaluation of the maxillary dentoskeletal complex after rapid palatal expansion. Am J Orthod Dentofacial Orthop 2010;138:486-92. https://doi.org/10.1016/j.ajodo.2008.10.025
  17. Timock AM, Cook V, McDonald T, Leo MC, Crowe J, Benninger BL, et al. Accuracy and reliability of buccal bone height and thickness measurements from cone-beam computed tomography imaging. Am J Orthod Dentofacial Orthop 2011;140:734-44. https://doi.org/10.1016/j.ajodo.2011.06.021
  18. Vanarsdall RL Jr. Transverse dimension and longterm stability. Semin Orthod 1999;5:171-80. https://doi.org/10.1016/S1073-8746(99)80008-5
  19. Magnusson A, Bjerklin K, Kim H, Nilsson P, Marcusson A. Three-dimensional assessment of transverse skeletal changes after surgically assisted rapid maxillary expansion and orthodontic treatment: a prospective computerized tomography study. Am J Orthod Dentofacial Orthop 2012;142: 825-33. https://doi.org/10.1016/j.ajodo.2012.08.015
  20. Corbridge JK, Campbell PM, Taylor R, Ceen RF, Buschang PH. Transverse dentoalveolar changes after slow maxillary expansion. Am J Orthod Dentofacial Orthop 2011;140:317-25. https://doi.org/10.1016/j.ajodo.2010.06.025
  21. Garib DG, Henriques JF, Janson G, de Freitas MR, Fernandes AY. Periodontal effects of rapid maxillary expansion with tooth-tissue-borne and tooth-borne expanders: a computed tomography evaluation. Am J Orthod Dentofacial Orthop 2006;129:749-58. https://doi.org/10.1016/j.ajodo.2006.02.021
  22. Jung PK, Lee GC, Moon CH. Comparison of conebeam computed tomography cephalometric measurements using a midsagittal projection and conventional two-dimensional cephalometric measurements. Korean J Orthod 2015;45:282-8. https://doi.org/10.4041/kjod.2015.45.6.282
  23. Melsen B. Palatal growth studied on human autopsy material. A histologic microradiographic study. Am J Orthod 1975;68:42-54.
  24. El H, Palomo JM. Three-dimensional evaluation of upper airway following rapid maxillary expansion: a CBCT study. Angle Orthod 2014;84:265-73. https://doi.org/10.2319/012313-71.1
  25. Pinto PX, Mommaerts MY, Wreakes G, Jacobs WV. Immediate postexpansion changes following the use of the transpalatal distractor. J Oral Maxillofac Surg 2001;59:994-1000; discussion 1001. https://doi.org/10.1053/joms.2001.25823
  26. Bazargani F, Feldmann I, Bondemark L. Threedimensional analysis of effects of rapid maxillary expansion on facial sutures and bones. Angle Orthod 2013;83:1074-82. https://doi.org/10.2319/020413-103.1
  27. Lione R, Franchi L, Cozza P. Does rapid maxillary expansion induce adverse effects in growing subjects? Angle Orthod 2013;83:172-82. https://doi.org/10.2319/041012-300.1
  28. Gurgel JA, Tiago CM, Normando D. Transverse changes after surgically assisted rapid palatal expansion. Int J Oral Maxillofac Surg 2014;43:316-22. https://doi.org/10.1016/j.ijom.2013.10.001
  29. Park HS, Lee YJ, Jeong SH, Kwon TG. Density of the alveolar and basal bones of the maxilla and the mandible. Am J Orthod Dentofacial Orthop 2008;133:30-7. https://doi.org/10.1016/j.ajodo.2006.01.044
  30. Tian YL, Liu F, Sun HJ, Lv P, Cao YM, Yu M, Yue Y. Alveolar bone thickness around maxillary central incisors of different inclination assessed with conebeam computed tomography. Korean J Orthod 2015;45:245-52. https://doi.org/10.4041/kjod.2015.45.5.245
  31. Baysal A, Uysal T, Veli I, Ozer T, Karadede I, Hekimoglu S. Evaluation of alveolar bone loss following rapid maxillary expansion using conebeam computed tomography. Korean J Orthod 2013;43:83-95. https://doi.org/10.4041/kjod.2013.43.2.83
  32. Handelman CS, Wang L, BeGole EA, Haas AJ. Nonsurgical rapid maxillary expansion in adults: report on 47 cases using the Haas expander. Angle Orthod 2000;70:129-44.

Cited by

  1. Skeletal and Dentoalveolar Changes after Skeletal Anchorage-assisted Rapid Palatal Expansion in Young Adults: A Cone Beam Computed Tomography Study vol.7, pp.3, 2017, https://doi.org/10.4103/2321-1407.207220
  2. Corticopuncture Facilitated Microimplant-Assisted Rapid Palatal Expansion vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/1392895
  3. Zygomaticomaxillary modifications in the horizontal plane induced by micro-implant-supported skeletal expander, analyzed with CBCT images vol.19, pp.1, 2017, https://doi.org/10.1186/s40510-018-0240-2
  4. Class III treatment by combining facemask (FM) and maxillary skeletal expander (MSE) vol.24, pp.1, 2017, https://doi.org/10.1053/j.sodo.2018.01.009
  5. Is there an optimal initial amount of activation for midpalatal suture expansion? : A histomorphometric and immunohistochemical study in a rabbit model vol.79, pp.3, 2017, https://doi.org/10.1007/s00056-018-0134-4
  6. Predictors of midpalatal suture expansion by miniscrew-assisted rapid palatal expansion in young adults: A preliminary study vol.49, pp.6, 2017, https://doi.org/10.4041/kjod.2019.49.6.360
  7. Skeletal and dentoalveolar changes in the transverse dimension using microimplant-assisted rapid palatal expansion (MARPE) appliances vol.25, pp.1, 2017, https://doi.org/10.1053/j.sodo.2019.02.006
  8. Assessment of respiratory muscle strength and airflow before and after microimplant-assisted rapid palatal expansion vol.89, pp.5, 2019, https://doi.org/10.2319/070518-504.1
  9. Asymmetric nasomaxillary expansion induced by tooth‐bone‐borne expander producing differential craniofacial changes vol.22, pp.4, 2017, https://doi.org/10.1111/ocr.12320
  10. Molar Inclination and Surrounding Alveolar Bone Change Relative To the Design of Bone-borne Maxillary Expanders: A Cbct study vol.90, pp.1, 2020, https://doi.org/10.2319/050619-316.1
  11. Description of a Digital Work-Flow for CBCT-Guided Construction of Micro-Implant Supported Maxillary Skeletal Expander vol.13, pp.8, 2017, https://doi.org/10.3390/ma13081815
  12. Comparison of dimensions and volume of upper airway before and after mini-implant assisted rapid maxillary expansion vol.90, pp.3, 2017, https://doi.org/10.2319/080919-522.1
  13. Stability of bimaxillary surgery involving intraoral vertical ramus osteotomy with or without presurgical miniscrew-assisted rapid palatal expansion in adult patients with skeletal Class III malocclus vol.50, pp.5, 2017, https://doi.org/10.4041/kjod.2020.50.5.304
  14. Can palatal splint improve stability of segmental Le Fort I osteotomies? vol.23, pp.4, 2017, https://doi.org/10.1111/ocr.12399
  15. Differential assessment of skeletal, alveolar, and dental components induced by microimplant-supported midfacial skeletal expander (MSE), utilizing novel angular measurements from the fulcrum vol.21, pp.1, 2017, https://doi.org/10.1186/s40510-020-00320-w
  16. Maxillary dental and skeletal effects after treatment with self-ligating appliance and miniscrew-assisted rapid maxillary expansion vol.159, pp.2, 2017, https://doi.org/10.1016/j.ajodo.2020.09.011
  17. Effect of Different Surface Designs on the Rotational Resistance and Stability of Orthodontic Miniscrews: A Three-Dimensional Finite Element Study vol.21, pp.6, 2017, https://doi.org/10.3390/s21061964
  18. Skeletal width changes after mini-implant-assisted rapid maxillary expansion (MARME) in young adults vol.91, pp.3, 2021, https://doi.org/10.2319/052920-491.1
  19. Intermaxillary elastics on skeletal anchorage and MARPE to treat a class III maxillary retrognathic open bite adolescent: A case report vol.19, pp.4, 2021, https://doi.org/10.1016/j.ortho.2021.08.001
  20. Palatal bone thickness at the implantation area of maxillary skeletal expander in adult patients with skeletal Class III malocclusion: a cone-beam computed tomography study vol.21, pp.1, 2021, https://doi.org/10.1186/s12903-021-01489-0
  21. Success and complication rate of miniscrew assisted non-surgical palatal expansion in adults - a consecutive study using a novel force-controlled polycyclic activation protocol vol.17, pp.1, 2021, https://doi.org/10.1186/s13005-021-00301-2
  22. Stress distribution and displacement of three different types of micro-implant assisted rapid maxillary expansion (MARME): a three-dimensional finite element study vol.22, pp.1, 2021, https://doi.org/10.1186/s40510-021-00357-5