DOI QR코드

DOI QR Code

Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons

  • Han, Jin-Eon (Department of Pharmacology, School of Dentistry, Kyungpook National University) ;
  • Cho, Jin-Hwa (Department of Pharmacology, School of Dentistry, Kyungpook National University) ;
  • Choi, In-Sun (Department of Pharmacology, School of Dentistry, Kyungpook National University) ;
  • Kim, Do-Yeon (Department of Pharmacology, School of Dentistry, Kyungpook National University) ;
  • Jang, Il-Sung (Department of Pharmacology, School of Dentistry, Kyungpook National University)
  • Received : 2016.11.08
  • Accepted : 2017.01.18
  • Published : 2017.03.01

Abstract

The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent $K^+$ and $Ca^{2+}$ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent $K^+$currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent $K^+$ currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker $Cs^+$ (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent $Ca^{2+}$ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.

Keywords

References

  1. Reeh PW, Steen KH. Tissue acidosis in nociception and pain. Prog Brain Res. 1996;113:143-151.
  2. Chesler M, Kaila K. Modulation of pH by neuronal activity. Trends Neurosci. 1992;15:396-402. https://doi.org/10.1016/0166-2236(92)90191-A
  3. de Hemptinne A, Marrannes R, Vanheel B. Surface pH and the control of intracellular pH in cardiac and skeletal muscle. Can J Physiol Pharmacol. 1987;65:970-977. https://doi.org/10.1139/y87-154
  4. Steen KH, Reeh PW. Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neurosci Lett. 1993;154:113-116. https://doi.org/10.1016/0304-3940(93)90184-M
  5. Steen KH, Reeh PW, Anton F, Handwerker HO. Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J Neurosci. 1992;12:86-95. https://doi.org/10.1523/JNEUROSCI.12-01-00086.1992
  6. Steen KH, Issberner U, Reeh PW. Pain due to experimental acidosis in human skin: evidence for non-adapting nociceptor excitation. Neurosci Lett . 1995;199:29-32. https://doi.org/10.1016/0304-3940(95)12002-L
  7. Krishtal O. The ASICs: signaling molecules? Modulators? Trends Neurosci. 2003;26:477-483. https://doi.org/10.1016/S0166-2236(03)00210-8
  8. Wemmie JA, Price MP, Welsh MJ. Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci. 2006;29:578-586. https://doi.org/10.1016/j.tins.2006.06.014
  9. Wemmie JA, Taugher RJ, Kreple CJ. Acid-sensing ion channels in pain and disease. Nat Rev Neurosci. 2013;14:461-471. https://doi.org/10.1038/nrn3529
  10. Holzer P. Acid-sensitive ion channels and receptors. Handb Exp Pharmacol. 2009;(194):283-332.
  11. Cody FW, Lee RW, Taylor A. A functional analysis of the components of the mesencephalic nucleus of the fifth nerve in the cat. J Physiol. 1972;226:249-261. https://doi.org/10.1113/jphysiol.1972.sp009983
  12. Jacquin MF, Rhoades RW, Enfiejian HL, Egger MD. Organization and morphology of masticatory neurons in the rat: a retrograde HRP study. J Comp Neurol. 1983;218:239-256. https://doi.org/10.1002/cne.902180302
  13. Lazarov NE. Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog Neurobiol. 2002;66:19-59. https://doi.org/10.1016/S0301-0082(01)00021-1
  14. Verdier D, Lund JP, Kolta A. Synaptic inputs to trigeminal primary afferent neurons cause firing and modulate intrinsic oscillatory activity. J Neurophysiol. 2004;92:2444-2455. https://doi.org/10.1152/jn.00279.2004
  15. Yokomizo Y, Murai Y, Tanaka E, Inokuchi H, Kusukawa J, Higashi H. Excitatory GABAergic synaptic potentials in the mesencephalic trigeminal nucleus of adult rat in vitro. Neurosci Res. 2005;51:463-474. https://doi.org/10.1016/j.neures.2004.12.016
  16. Sutherland SP, Benson CJ, Adelman JP, McCleskey EW. Acidsensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci U S A. 2001;98:711-716. https://doi.org/10.1073/pnas.98.2.711
  17. Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K, Drummond HA, Whiteis CA, Costa V, Price M, Benson C, Welsh MJ, Chapleau MW, Abboud FM. The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron. 2009;64:885-897. https://doi.org/10.1016/j.neuron.2009.11.007
  18. Molliver DC, Immke DC, Fierro L, Pare M, Rice FL, McCleskey EW. ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons. Mol Pain. 2005;1:35.
  19. Connor M, Naves LA, McCleskey EW. Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat. Mol Pain. 2005;1:31.
  20. Kang IS, Cho JH, Choi IS, Kim DY, Jang IS. Acidic pH modulation of $Na^{+}$ channels in trigeminal mesencephalic nucleus neurons. Neuroreport . 2016;27:1274-1280. https://doi.org/10.1097/WNR.0000000000000692
  21. Rhee JS, Ishibashi H, Akaike N. Calcium channels in the GABAergic presynaptic nerve terminals projecting to meynert neurons of the rat. J Neurochem. 1999;72:800-807. https://doi.org/10.1046/j.1471-4159.1999.0720800.x
  22. Womble MD, Moises HC. Hyperpolarization-activated currents in neurons of the rat basolateral amygdala. J Neurophysiol. 1993;70:2056-2065. https://doi.org/10.1152/jn.1993.70.5.2056
  23. Murase K, Ryu PD, Randic M. Excitatory and inhibitory amino acids and peptide-induced responses in acutely isolated rat spinal dorsal horn neurons. Neurosci Lett. 1989;103:56-63. https://doi.org/10.1016/0304-3940(89)90485-0
  24. Nakamura M, Jang IS. Characterization of proton-induced currents in rat trigeminal mesencephalic nucleus neurons. Brain Res. 2014;1583:12-22. https://doi.org/10.1016/j.brainres.2014.08.009
  25. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev. 2005;57:473-508. https://doi.org/10.1124/pr.57.4.10
  26. Alexander SP, Mathie A, Peters JA. Guide to Receptors and Channels (GRAC), 5th edition. Br J Pharmacol. 2011;164 Suppl 1:S1-324. https://doi.org/10.1111/j.1476-5381.2011.01649_1.x
  27. Aguilar-Bryan L, Clement JP 4th, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. Toward understanding the assembly and structure of KATP channels. Physiol Rev. 1998;78:227-245. https://doi.org/10.1152/physrev.1998.78.1.227
  28. Kobayashi T, Ikeda K. G protein-activated inwardly rectifying potassium channels as potential therapeutic targets. Curr Pharm Des. 2006;12:4513-4523. https://doi.org/10.2174/138161206779010468
  29. Kim D. Physiology and pharmacology of two-pore domain potassium channels. Curr Pharm Des. 2005;11:2717-2736. https://doi.org/10.2174/1381612054546824
  30. Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S. International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev. 2005;57:527-540. https://doi.org/10.1124/pr.57.4.12
  31. Matsumoto S, Yoshida S, Takahashi M, Saiki C, Takeda M. The roles of I(D), I(A) and I(K) in the electrophysiological functions of small diameter rat trigeminal ganglion neurons. Curr Mol Pharmacol. 2010;3:30-36. https://doi.org/10.2174/1874467211003010030
  32. Tombaugh GC, Somjen GG. Effects of extracellular pH on voltagegated $Na^{+}$, $K^{+}$ and $Ca^{2+}$ currents in isolated rat CA1 neurons. J Physiol. 1996;493:719-732. https://doi.org/10.1113/jphysiol.1996.sp021417
  33. Postea O, Biel M. Exploring HCN channels as novel drug targets. Nat Rev Drug Discov. 2011;10:903-914.
  34. He C, Chen F, Li B, Hu Z. Neurophysiology of HCN channels: from cellular functions to multiple regulations. Prog Neurobiol. 2014;112:1-23. https://doi.org/10.1016/j.pneurobio.2013.10.001
  35. Cohen IS, Robinson RB. Pacemaker current and automatic rhythms: toward a molecular understanding. Handb Exp Pharmacol. 2006;(171):41-71.
  36. Siu CW, Lieu DK, Li RA. HCN-encoded pacemaker channels: from physiology and biophysics to bioengineering. J Membr Biol. 2006;214:115-122. https://doi.org/10.1007/s00232-006-0881-9
  37. Wahl-Schott C, Fenske S, Biel M. HCN channels: new roles in sinoatrial node function. Curr Opin Pharmacol. 2014;15:83-90. https://doi.org/10.1016/j.coph.2013.12.005
  38. Dunlop J, Vasilyev D, Lu P, Cummons T, Bowlby MR. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and pain. Curr Pharm Des. 2009;15:1767-1772. https://doi.org/10.2174/138161209788186281
  39. Noam Y, Bernard C, Baram TZ. Towards an integrated view of HCN channel role in epilepsy. Curr Opin Neurobiol. 2011;21:873-879. https://doi.org/10.1016/j.conb.2011.06.013
  40. Emery EC, Young GT, McNaughton PA. HCN2 ion channels: an emerging role as the pacemakers of pain. Trends Pharmacol Sci. 2012;33:456-463. https://doi.org/10.1016/j.tips.2012.04.004
  41. DiFrancesco JC, DiFrancesco D. Dysfunctional HCN ion channels in neurological diseases. Front Cell Neurosci. 2015;6:174.
  42. Khakh BS, Henderson G. Hyperpolarization-activated cationic currents (Ih) in neurones of the trigeminal mesencephalic nucleus of the rat. J Physiol. 1998;510:695-704. https://doi.org/10.1111/j.1469-7793.1998.00695.x
  43. Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67:821-870. https://doi.org/10.1124/pr.114.009654
  44. Wu LG, Saggau P. Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci. 1997;20:204-212. https://doi.org/10.1016/S0166-2236(96)01015-6
  45. Lacinova L. Pharmacology of recombinant low-voltage activated calcium channels. Curr Drug Targets CNS Neurol Disord. 2004;3:105-111. https://doi.org/10.2174/1568007043482543
  46. Ohmori H, Yoshii M. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane. J Physiol. 1977;267:429-463. https://doi.org/10.1113/jphysiol.1977.sp011821
  47. Irisawa H, Sato R. Intra- and extracellular actions of proton on the calcium current of isolated guinea pig ventricular cells. Circ Res. 1986;59:348-355. https://doi.org/10.1161/01.RES.59.3.348
  48. Tytgat J, Nilius B, Carmeliet E. Modulation of the T-type cardiac Ca channel by changes in proton concentration. J Gen Physiol. 1990;96:973-990. https://doi.org/10.1085/jgp.96.5.973
  49. Hille B. Charges and potentials at the nerve surface. Divalent ions and pH. J Gen Physiol. 1968;51:221-236. https://doi.org/10.1085/jgp.51.2.221
  50. Khan A, Romantseva L, Lam A, Lipkind G, Fozzard HA. Role of outer ring carboxylates of the rat skeletal muscle sodium channel pore in proton block. J Physiol. 2002;543:71-84. https://doi.org/10.1113/jphysiol.2002.021014
  51. Benitah J, Balser JR, Marban E, Tomaselli GF. Proton inhibition of sodium channels: mechanism of gating shifts and reduced conductance. J Membr Biol. 1997;155:121-131. https://doi.org/10.1007/s002329900164

Cited by

  1. pH-Lemon, a Fluorescent Protein-Based pH Reporter for Acidic Compartments vol.4, pp.4, 2017, https://doi.org/10.1021/acssensors.8b01599
  2. Extracellular pH modulation of excitatory synaptic transmission in hippocampal CA3 neurons vol.123, pp.6, 2017, https://doi.org/10.1152/jn.00013.2020