DOI QR코드

DOI QR Code

Effect of subcutaneous treatment with human umbilical cord blood-derived multipotent stem cells on peripheral neuropathic pain in rats

  • Lee, Min Ju (Department of Dental Anesthesiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Yoon, Tae Gyoon (Department of Anesthesiology and Pain Medicine, Konkuk University Medical Center, Research Institute of Medical Science, Konkuk University School of Medicine) ;
  • Kang, Moonkyu (Department of Dental Anesthesiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kim, Hyun Jeong (Department of Dental Anesthesiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kang, Kyung Sun (Adult Stem Cell Research Center, Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University)
  • Received : 2016.07.01
  • Accepted : 2016.11.29
  • Published : 2017.03.01

Abstract

In this study, we aim to determine the in vivo effect of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) on neuropathic pain, using three, principal peripheral neuropathic pain models. Four weeks after hUCB-MSC transplantation, we observed significant antinociceptive effect in hUCB-MSC-transplanted rats compared to that in the vehicle-treated control. Spinal cord cells positive for c-fos, CGRP, p-ERK, p-p 38, MMP-9 and MMP 2 were significantly decreased in only CCI model of hUCB-MSCs-grafted rats, while spinal cord cells positive for CGRP, p-ERK and MMP-2 significantly decreased in SNL model of hUCB-MSCs-grafted rats and spinal cord cells positive for CGRP and MMP-2 significantly decreased in SNI model of hUCB-MSCs-grafted rats, compared to the control 4 weeks or 8weeks after transplantation (p<0.05). However, cells positive for TIMP-2, an endogenous tissue inhibitor of MMP-2, were significantly increased in SNL and SNI models of hUCB-MSCs-grafted rats. Taken together, subcutaneous injection of hUCB-MSCs may have an antinociceptive effect via modulation of pain signaling during pain signal processing within the nervous system, especially for CCI model. Thus, subcutaneous administration of hUCB-MSCs might be beneficial for improving those patients suffering from neuropathic pain by decreasing neuropathic pain activation factors, while increasing neuropathic pain inhibition factor.

Keywords

References

  1. Dworkin RH. An overview of neuropathic pain: syndromes, symptoms, signs, and several mechanisms. Clin J Pain. 2002;18:343-349. https://doi.org/10.1097/00002508-200211000-00001
  2. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33:87-107. https://doi.org/10.1016/0304-3959(88)90209-6
  3. Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain. 1992;50:355-363. https://doi.org/10.1016/0304-3959(92)90041-9
  4. Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000;87:149-158. https://doi.org/10.1016/S0304-3959(00)00276-1
  5. Mukhida K, Mendez I, McLeod M, Kobayashi N, Haughn C, Milne B, Baghbaderani B, Sen A, Behie LA, Hong M. Spinal GABAergic transplants attenuate mechanical allodynia in a rat model of neuropathic pain. Stem Cells. 2007;25:2874-2885. https://doi.org/10.1634/stemcells.2007-0326
  6. Dellemijn P. Are opioids effective in relieving neuropathic pain? Pain. 1999;80:453-462. https://doi.org/10.1016/S0304-3959(98)00256-5
  7. Jackson KC 2nd. Pharmacotherapy for neuropathic pain. Pain Pract. 2006;6:27-33. https://doi.org/10.1111/j.1533-2500.2006.00055.x
  8. McQuay H, Carroll D, Jadad AR, Wiffen P, Moore A. Anticonvulsant drugs for management of pain: a systematic review. BMJ. 1995;311:1047-1052. https://doi.org/10.1136/bmj.311.7012.1047
  9. Gang EJ, Hong SH, Jeong JA, Hwang SH, Kim SW, Yang IH, Ahn C, Han H, Kim H. In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2004;321:102-108. https://doi.org/10.1016/j.bbrc.2004.06.111
  10. Kuh SU, Cho YE, Yoon DH, Kim KN, Ha Y. Functional recovery after human umbilical cord blood cells transplantation with brainderived neutrophic factor into the spinal cord injured rat. Acta Neurochir (Wien). 2005;147:985-992. https://doi.org/10.1007/s00701-005-0538-y
  11. Lim JH, Byeon YE, Ryu HH, Jeong YH, Lee YW, Kim WH, Kang KS, Kweon OK. Transplantation of canine umbilical cord bloodderived mesenchymal stem cells in experimentally induced spinal cord injured dogs. J Vet Sci. 2007;8:275-282. https://doi.org/10.4142/jvs.2007.8.3.275
  12. Seo KW, Lee SR, Bhandari DR, Roh KH, Park SB, So AY, Jung JW, Seo MS, Kang SK, Lee YS, Kang KS. OCT4A contributes to the stemness and multi-potency of human umbilical cord bloodderived multipotent stem cells (hUCB-MSCs). Biochem Biophys Res Commun. 2009;384:120-125. https://doi.org/10.1016/j.bbrc.2009.04.094
  13. Sun B, Roh KH, Park JR, Lee SR, Park SB, Jung JW, Kang SK, Lee YS, Kang KS. Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy. 2009;11:289-298. https://doi.org/10.1080/14653240902807026
  14. Kim SW, Han H, Chae GT, Lee SH, Bo S, Yoon JH, Lee YS, Lee KS, Park HK, Kang KS. Successful stem cell therapy using umbilical cord blood-derived multipotent stem cells for Buerger's disease and ischemic limb disease animal model. Stem Cells. 2006;24:1620-1626. https://doi.org/10.1634/stemcells.2005-0365
  15. Chattopadhyay S, Myers RR, Janes J, Shubayev V. Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve. Brain Behav Immun. 2007;21:561-568. https://doi.org/10.1016/j.bbi.2006.10.015
  16. Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. 2004;4:617-629. https://doi.org/10.1038/nri1418
  17. Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia. 2002;39:279-291. https://doi.org/10.1002/glia.10108
  18. Wang X, Jung J, Asahi M, Chwang W, Russo L, Moskowitz MA, Dixon CE, Fini ME, Lo EH. Effects of matrix metalloproteinase-9 gene knock-out on morphological and motor outcomes after traumatic brain injury. J Neurosci. 2000;20:7037-7042. https://doi.org/10.1523/JNEUROSCI.20-18-07037.2000
  19. Yong VW. Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci. 2005;6:931-944. https://doi.org/10.1038/nrn1807
  20. Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, Wang X, Lo EH. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006;12:441-445. https://doi.org/10.1038/nm1387
  21. Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med. 2008;14:331-336. https://doi.org/10.1038/nm1723
  22. Conlee KM, Stephens ML, Rowan AN, King LA. Carbon dioxide for euthanasia: concerns regarding pain and distress, with special reference to mice and rats. Lab Anim. 2005;39:137-161. https://doi.org/10.1258/0023677053739747
  23. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109-110. https://doi.org/10.1016/0304-3959(83)90201-4
  24. Tal M, Bennett GJ. Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain. 1994;57:375-382. https://doi.org/10.1016/0304-3959(94)90013-2
  25. Ahn SN, Guu JJ, Tobin AJ, Edgerton VR, Tillakaratne NJ. Use of c-fos to identify activity-dependent spinal neurons after stepping in intact adult rats. Spinal Cord. 2006;44:547-559. https://doi.org/10.1038/sj.sc.3101862
  26. Lin YR, Chen HH, Ko CH, Chan MH. Effects of honokiol and magnolol on acute and inflammatory pain models in mice. Life Sci. 2007;81:1071-1078. https://doi.org/10.1016/j.lfs.2007.08.014
  27. Tsuda M, Tozaki-Saitoh H, Masuda T, Toyomitsu E, Tezuka T, Yamamoto T, Inoue K. Lyn tyrosine kinase is required for P2X(4) receptor upregulation and neuropathic pain after peripheral nerve injury. Glia. 2008;56:50-58. https://doi.org/10.1002/glia.20591
  28. Blackburn-Munro G. Pain-like behaviours in animals - how human are they? Trends Pharmacol Sci. 2004;25:299-305. https://doi.org/10.1016/j.tips.2004.04.008
  29. Bridges D, Thompson SW, Rice AS. Mechanisms of neuropathic pain. Br J Anaesth. 2001;87:12-26. https://doi.org/10.1093/bja/87.1.12
  30. Bettoni I, Comelli F, Rossini C, Granucci F, Giagnoni G, Peri F, Costa B. Glial TLR4 receptor as new target to treat neuropathic pain: efficacy of a new receptor antagonist in a model of peripheral nerve injury in mice. Glia. 2008;56:1312-1319. https://doi.org/10.1002/glia.20699
  31. Stubley LA, Martinez MA, Karmally S, Lopez T, Cejas P, Eaton MJ. Only early intervention with gamma-aminobutyric acid cell therapy is able to reverse neuropathic pain after partial nerve injury. J Neurotrauma . 2001;18:471-477. https://doi.org/10.1089/089771501750171092
  32. Cejas PJ, Martinez M, Karmally S, McKillop M, McKillop J, Plunkett JA, Oudega M, Eaton MJ. Lumbar transplant of neurons genetically modified to secrete brain-derived neurotrophic factor attenuates allodynia and hyperalgesia after sciatic nerve constriction. Pain. 2000;86:195-210. https://doi.org/10.1016/S0304-3959(00)00245-1
  33. Decosterd I, Buchser E, Gilliard N, Saydoff J, Zurn AD, Aebischer P. Intrathecal implants of bovine chromaffin cells alleviate mechanical allodynia in a rat model of neuropathic pain. Pain. 1998;76:159-166. https://doi.org/10.1016/S0304-3959(98)00044-X
  34. Eaton MJ, Martinez M, Karmally S, Lopez T, Sagen J. Initial characterization of the transplant of immortalized chromaffin cells for the attenuation of chronic neuropathic pain. Cell Transplant. 2000;9:637-656. https://doi.org/10.1177/096368970000900509
  35. Yu W, Hao JX, Xu XJ, Saydoff J, Haegerstrand A, Hokfelt T, Wiesenfeld-Hallin Z. Long-term alleviation of allodynia-like behaviors by intrathecal implantation of bovine chromaffin cells in rats with spinal cord injury. Pain. 1998;74:115-122. https://doi.org/10.1016/S0304-3959(97)00204-2
  36. Zhuang ZY, Gerner P, Woolf CJ, Ji RR. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain. 2005;114:149-159. https://doi.org/10.1016/j.pain.2004.12.022
  37. Ji RR, Baba H, Brenner GJ, Woolf CJ. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci. 1999;2:1114-1119. https://doi.org/10.1038/16040
  38. Impey S, Obrietan K, Storm DR. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron. 1999;23:11-14. https://doi.org/10.1016/S0896-6273(00)80747-3
  39. Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev. 1998;28:370-490. https://doi.org/10.1016/S0165-0173(98)00018-6
  40. Ji RR, Xu ZZ, Wang X, Lo EH. Matrix metalloprotease regulation of neuropathic pain. Trends Pharmacol Sci. 2009;30:336-340. https://doi.org/10.1016/j.tips.2009.04.002
  41. Jin SX, Zhuang ZY, Woolf CJ, Ji RR. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci. 2003;23:4017-4022. https://doi.org/10.1523/JNEUROSCI.23-10-04017.2003
  42. Hu J, Van den Steen PE, Sang QX, Opdenakker G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov. 2007;6:480-498. https://doi.org/10.1038/nrd2308
  43. Jeffery N, McLean MH, El-Omar EM, Murray GI. The matrix metalloproteinase/tissue inhibitor of matrix metalloproteinase profile in colorectal polyp cancers. Histopathology. 2009;54:820-828. https://doi.org/10.1111/j.1365-2559.2009.03301.x
  44. Saporta S, Kim JJ, Willing AE, Fu ES, Davis CD, Sanberg PR. Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res. 2003;12:271-278. https://doi.org/10.1089/152581603322023007
  45. Veeravalli KK, Dasari VR, Tsung AJ, Dinh DH, Gujrati M, Fassett D, Rao JS. Human umbilical cord blood stem cells upregulate matrix metalloproteinase-2 in rats after spinal cord injury. Neurobiol Dis. 2009;36:200-212. https://doi.org/10.1016/j.nbd.2009.07.012
  46. Renn CL, Dorsey SG. The physiology and processing of pain: a review. AACN Clin Issues. 2005;16:277-290; quiz 413-415. https://doi.org/10.1097/00044067-200507000-00002
  47. Han F, Zhang YF, Li YQ. Fos expression in tyrosine hydroxylasecontaining neurons in rat brainstem after visceral noxious stimulation: an immunohistochemical study. World J Gastroenterol. 2003;9:1045-1050. https://doi.org/10.3748/wjg.v9.i5.1045
  48. Hentall ID, Mesigil R, Pinzon A, Noga BR. Temporal and spatial profiles of pontine-evoked monoamine release in the rat's spinal cord. J Neurophysiol. 2003;89:2943-2951. https://doi.org/10.1152/jn.00608.2002

Cited by

  1. Simultaneous harvesting of endothelial progenitor cells and mesenchymal stem cells from the human umbilical cord vol.15, pp.1, 2017, https://doi.org/10.3892/etm.2017.5502
  2. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain vol.129, pp.2, 2018, https://doi.org/10.1097/aln.0000000000002130
  3. Mesenchymal Stem Cells and their Exosomes: Promising Therapeutics for Chronic Pain vol.14, pp.8, 2017, https://doi.org/10.2174/1574888x14666190912162504
  4. A Review on Stem Cell Therapy for Neuropathic Pain vol.15, pp.None, 2017, https://doi.org/10.2174/1574888x15666200214112908
  5. Therapeutic Efficacy of Subcutaneous and Intraperitoneal Injections of a Single Dose of Human Umbilical Mesenchymal Stem Cells in Acute and Chronic Colitis in a Mouse Model vol.40, pp.1, 2020, https://doi.org/10.1007/s40846-019-00494-7