과제정보
연구 과제 주관 기관 : 한국연구재단
참고문헌
- M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira. M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J.Shade and D. Fulk, s"The Digital Michelangelo Project: 3D Scanning of Large Statues", In Proc. ACM SIGGRAPH, pp. 131-144, 2000.
- D. Levin, "Mesh-Independent Surface Interpolation", Geometric modeling for scientific visualization, pp. 37-49, 2001.
- J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum and T. R. Evans, "Reconstruction and Representation of 3D Objects with Radial Basis Functions", In Proc. ACM SIGGRAPH, pp. 67-76, 2001.
- R. Kolluri, J. R. Shewchuk and J. F. O'Brien, "Spectral Surface Reconstruction from Noisy Point Clouds", In Proc. Symposium on Computational geometry, pp. 11-21, 2004.
- J. Digne, J. M. Morel, C. M. Souzani and C. Lartigue, "Scale Space Meshing of Raw Data Point Sets", Computer Graphics Forum, 30(6): 1630-1642, 2011. https://doi.org/10.1111/j.1467-8659.2011.01848.x
- W. E. Lorensen and H. E. Cline, "Marching Cubes: A High Resolution 3D Surface Construction Algorithm", In Proc. ACM SIGGRAPH, 21(4): 163-169, 1987.
- M. Kazhdan, M. Bolitho and H. Hoppe, "Poisson Surface Reconstruction", In Proc. Symposium on Geometry Processing, pp. 61-70, 2006.
- H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle, "Surface Reconstruction from Unorganized Points", In Proc. ACM SIGGRAPH, 26(2): 71-78, 1992.
- G. Guennebaud and M. Gross, "Algebraic Point Set Surfaces", ACM Transactions on Graphics, 26(3): 23:1-23:9, 2007.
- E. Candes, J. Romberg and T. Tao, "Stable Signal Recovery from Incomplete and Inaccurate Measurements", Communications on Pure and Applied Mathematics, 59(8): 1207-1223, 2006. https://doi.org/10.1002/cpa.20124
-
D. Ge, X. Jiang and Y. Ye, "A Note on the Complexity of
$L_1$ Minimization", Mathematical Programming, 129(2): 285-299, 2011. https://doi.org/10.1007/s10107-011-0470-2 -
E. Candes and J. Romberg, "
$\ell_1$ -MAGIC : Recovery of Sparse Signals via Convex Programming", Technical Report, Caltech. Pasadena, Califonia, 2005. -
Y. Sharon, J. Wright and Y. Ma, "Computation and relaxation of conditions for equivalence between
$\ell^1$ and$\ell^0$ minimization", CSL Technical Report UILU-ENG-07-2208, Univ. of Illinois, Urbana-Champaign 2007. -
H. Avron, A. Sharf, C. Greif and D. Cohen-Or, "
$\ell_1$ -Sparse Reconstruction of Sharp Point Set Surfaces", ACM Transactions on Graphics, 29(5): 135:1-135:12, 2010. -
E. Candes, M. B. Wakin and S. P. Boyd, "Enhancing Sparsity by Reweighted
$\ell_1$ Minimization", Journal of Fourier Analysis and Applications, 14(56): 877-905, 2008. https://doi.org/10.1007/s00041-008-9045-x -
R. Wang, Z. Yang, L. Liu, J. Deng and F. Chen, "Decoupling noise and features via weighted
$\ell_1$ -analysis compressed sensing", ACM Transactions on Graphics, 33(2): 18:1-18:12, 2014. - J. Digne, R. Chaine and S. Valette, "Self-Similarity for Accurate Compression of Point Sampled Surfaces", Computer Graphics Forum, 33(2): 155-164, 2014. https://doi.org/10.1111/cgf.12305
- S. Xiong, J. Zhang, J. Zheng, J. Cai and L. Liu, "Robust Surface Reconstruction via Dictionary Learning", ACM Transactions on Graphics, 33(6): 201:1-201:12, 2014.
- M. Aharon, M. Elad and A. Bruckstein, "K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation", IEEE Transactions on Signal Processing, 54(11): 4311-4322, 2006. https://doi.org/10.1109/TSP.2006.881199
-
K. M. Koh, S. J. Kim and S. Boyd, "An Interior-Point Method for Large-Scale
$\ell_1$ -Regularized Logistic Regression", Journal of Machine Learning Research, 8: 1519-1555, 2007. - l1_ls : Simple Matlab Solver for l1-regularized Least Squares Problems, http://web.stanford.edu/-boyd/l1_ls/
- Libigl, https://github.com/libigl/libigl