DOI QR코드

DOI QR Code

Automatic Extraction of Ascending Aorta and Ostium in Cardiac CT Angiography Images

심장 CT 혈관 조영 영상에서 대동맥 및 심문 자동 검출

  • Kim, Hye-Ryun (Dept. of Computer Science and Engineering, Ewha Womans University) ;
  • Kang, Mi-Sun (Dept. of Computer Science and Engineering, Ewha Womans University) ;
  • Kim, Myoung-Hee (Dept. of Computer Science and Engineering, Ewha Womans University)
  • 김혜련 (이화여자대학교 컴퓨터공학과) ;
  • 강미선 (이화여자대학교 컴퓨터공학과) ;
  • 김명희 (이화여자대학교 컴퓨터공학과)
  • Received : 2017.02.06
  • Accepted : 2017.03.07
  • Published : 2017.03.07

Abstract

Computed tomographic angiography (CTA) is widely used in the diagnosis and treatment of coronary artery disease because it shows not only the whole anatomical structure of the cardiovascular three-dimensionally but also provides information on the lesion and type of plaque. However, due to the large size of the image, there is a limitation in manually extracting coronary arteries, and related researches are performed to automatically extract coronary arteries accurately. As the coronary artery originate from the ascending aorta, the ascending aorta and ostium should be detected to extract the coronary tree accurately. In this paper, we propose an automatic segmentation for the ostium as a starting structure of coronary artery in CTA. First, the region of the ascending aorta is initially detected by using Hough circle transform based on the relative position and size of the ascending aorta. Second, the volume of interest is defined to reduce the search range based on the initial area. Third, the refined ascending aorta is segmented by using a two-dimensional geodesic active contour. Finally, the two ostia are detected within the region of the refined ascending aorta. For the evaluation of our method, we measured the Euclidean distance between the result and the ground truths annotated manually by medical experts in 20 CTA images. The experimental results showed that the ostia were accurately detected.

심장 CT 혈관 조영 영상은 심혈관의 전체 해부학 구조를 3D 로 보여줄 뿐 아니라 병변의 정보를 제공하기 때문에 관상동맥 질환 진단 및 치료에 많이 사용되고 있다. 하지만 영상의 방대한 크기로 인해 수동으로 정보를 추출하는 데는 한계가 있어 자동으로 심혈관을 정확하게 추출하는 연구들이 활발히 진행되고 있다. 심혈관 자동 추출 알고리즘을 개발하는데 있어 심혈관의 시작점인 상행대동맥의 심문을 검출하는 방법은 필수적인 부분이다. 본 논문에서는 심혈관의 시작점인 심문을 분할하는 방법을 제안한다. 첫째, 상행대동맥의 크기와 위치를 고려한 허프변환으로 대동맥 초기영역을 검출한다. 둘째, 초기영역을 기반으로 탐색범위를 줄일 수 있도록 관심 볼륨 영역을 설정한다. 셋째, 지오데식 활성외곽선 모델을 기반으로 정제된 대동맥 영역을 검출한다. 마지막으로 검출된 대동맥 영역에서 심문을 분할한다. 제안방법의 평가를 위해 20 개의 심장 CT 혈관 조영 영상에서 전문가가 수동으로 표기한 시작점과 비교 분석하였다. 실험 결과 제안방법을 통해 시작점이 제대로 추출 됨을 확인할 수 있었다.

Keywords

Acknowledgement

Grant : 개인 건강정보 기반 개방형 ICT 힐링 플랫폼 기술 개발

Supported by : 정보통신기술진흥센터

References

  1. D. Mozaffarian, E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, et al., "Executive Summary: Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association," Circulation, vol. 133, p. 447, 2016. https://doi.org/10.1161/CIR.0000000000000366
  2. R. Goldenberg, D. Eilot, G. Begelman, E. Walach, E. Ben-Ishai, and N. Peled, "Computer-aided simple triage (CAST) for coronary CT angiography (CCTA)," International journal of computer assisted radiology and surgery, vol. 7, pp. 819-827, 2012. https://doi.org/10.1007/s11548-012-0684-7
  3. M. Schaap, C. T. Metz, T. van Walsum, A. G. van der Giessen, A. C. Weustink, N. R. Mollet, et al., "Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms," Medical image analysis, vol. 13, pp. 701-714, 2009. https://doi.org/10.1016/j.media.2009.06.003
  4. A. Hennemuth, T. Boskamp, D. Fritz, C. Kühnel, S. Bock, D. Rinck, et al., "One-click coronary tree segmentation in CT angiographic images," in International Congress Series, 2005, pp. 317-321.
  5. S. Wang, L. Fu, Y. Yue, Y. Kang, and J. Liu, "Fast and automatic segmentation of ascending aorta in MSCT volume data," in Image and Signal Processing, 2009. CISP'09. 2nd International Congress on, 2009, pp. 1-5.
  6. G. Yang, P. Kitslaar, M. Frenay, A. Broersen, M. J. Boogers, J. J. Bax, et al., "Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography," The international journal of cardiovascular imaging, vol. 28, pp. 921-933, 2012. https://doi.org/10.1007/s10554-011-9894-2
  7. Y. Jang, H. Y. Jung, Y. Hong, I. Cho, H. Shim, and H.-J. Chang, "Geodesic Distance Algorithm for Extracting the Ascending Aorta from 3D CT Images," Computational and mathematical methods in medicine, vol. 2016, 2016.
  8. S. Kurugol, R. S. J. Estepar, J. Ross, and G. R. Washko, "Aorta segmentation with a 3D level set approach and quantification of aortic calcifications in non-contrast chest CT," in Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 2012, pp. 2343-2346.
  9. C. Wang and O. Smedby, "An automatic seeding method for coronary artery segmentation and skeletonization in CTA," The Insight Journal, pp. 1-8, 2008.
  10. J. Illingworth and J. Kittler, "The adaptive Hough transform," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 690-698, 1987.
  11. https://www.reference.com/science/normal-size-ascending-aortabb1d8a0e32bafeab
  12. V. Caselles, R. Kimmel, and G. Sapiro, "Geodesic active contours," International journal of computer vision, vol. 22, pp. 61-79, 1997. https://doi.org/10.1023/A:1007979827043
  13. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, "Multiscale vessel enhancement filtering," in International Conference on Medical Image Computing and Computer-Assisted Intervention, 1998, pp. 130-137.
  14. M. Schaap, C. T. Metz, T. van Walsum, A. G. van der Giessen, A. C. Weustink, N. R. Mollet, et al., "Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms," Medical image analysis, vol. 13, pp. 701-714, 2009. https://doi.org/10.1016/j.media.2009.06.003
  15. 김태형, 황영상, and 신기영, "CT Angiography 영상에서 대동맥추출을 위한 혈관 분할 알고리즘 성능평가," 한국정보전자통신기술학회논문지, vol. 9, pp. 196-204, 2016.

Cited by

  1. 혈액인자가 관상동맥 석회화 수치에 미치는 영향 vol.15, pp.3, 2017, https://doi.org/10.7742/jksr.2021.15.3.337