DOI QR코드

DOI QR Code

명시적 그리고 암시적 민코우스키 합을 이용한 강체 침투깊이 계산 알고리즘

Penetration Depth Computation for Rigid Models using Explicit and Implicit Minkowski Sums

  • 이영은 (이화여자대학교 컴퓨터공학과) ;
  • 김영준 (이화여자대학교 컴퓨터공학과)
  • Lee, Youngeun (Department of Computer Science and Engineering, Ewha Womans University) ;
  • Kim, Young J. (Department of Computer Science and Engineering, Ewha Womans University)
  • 투고 : 2017.01.11
  • 심사 : 2017.03.07
  • 발행 : 2017.03.07

초록

본 논문에서는 3차원상의 두 강체 사이의 침투깊이 (penetration depth)를 명시적으로 민코우스키 합 (explicit Minkowski sum)을 생성하는 방법 ($PD_e$)과 암시적으로 민코우스키 합 (implicit Minkowski sum)을 생성 하는 방법 ($PD_i$)을 이용하여 계산하는 알고리즘을 제안하고 이들의 성능을 비교한다. 3차원 강체들 간의 침투깊이를 구하는데 성능상에 큰 장애가 되는 것이 민코우스키 합의 생성이다. 본 논문의 알고리즘들은 우선 물체의 중심 차 (centroid difference)와 운동 일관성 (motion coherence)기법을 이용하여 침투깊이를 예측한다. 특히 $PD_e$는 추측된 침투깊이에 부분 민코우스키 합을 명시적으로 생성 혹은 갱신하여 침투깊이를 빠르게 구한다. 반면에 $PD_i$는 민코우스키 합을 명시적으로 생성하기보다는 민코우스키 합에 접하는 접평면만을 반복적으로 생성하여 국소적으로 최적화된 침투깊이를 계산한다. 본 연구의 알고리즘들을 수천 개의 삼각형으로 이루어진 강체를 이용해 실험한 결과 수 밀리초 (millisecond) 이내의 빠른 속도로 침투깊이를 계산할 수 있다는 것을 실험적으로 보인다.

We present penetration depth (PD) computation algorithms using explicit Minkowski sum construction ($PD_e$) and implicit Minkowski sum construction ($PD_i$). Minkowski sum construction is the most time consuming part in fast PD computation. In order to address this issue, we find a candidate solution using a centroid difference and motion coherence. Then, $PD_e$ constructs or updates partial Minkowski sum around the candidate solution. In contrast, $PD_i$ constructs only a tangent plane to the Minkowski sums iteratively. In practice, our algorithms can compute PD for complicated models consisting of thousands of triangles in a few milli-seconds. We also discuss the benefits of using different construction of Minkowski sums in the context of PD.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri, "Computing the intersection-depth of polyhedra," Algorithmica, vol. 9, pp. 518-533, 1993. https://doi.org/10.1007/BF01190153
  2. R. V. Benson, Euclidean Geometry and Convexity. McGraw-Hill, 1966.
  3. S. Cameron, "Enhancing GJK: Computing minimum and penetration distance between convex polyhedra," in Proceedings of International Conference on Robotics and Automation, 1997, pp. 3112-3117.
  4. Y. J. Kim, M. C. Lin, and D. Manocha, "Incremental penetration depth estimation between convex polytopes using dualspace expansion," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 2, pp. 152-163, 2004. https://doi.org/10.1109/TVCG.2004.1260767
  5. Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha, "Fast penetration depth computation for physically-based animation," in Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2002, pp. 23-31.
  6. Y. J. Kim, M. C. Lin, and D. Manocha, "Fast penetration depth estimation using rasterization hardware and hierarchical refinement," in Algorithmic Foundations of Robotics V. Springer Berlin Heidelberg, 2004, pp. 505-521.
  7. S. Redon and M. C. Lin, "A fast method for local penetration depth computation," Journal of Graphics, GPU, and Game Tools, vol. 11, no. 2, pp. 37-50, 2006. https://doi.org/10.1080/2151237X.2006.10129216
  8. C. Je, M. Tang, Y. Lee, M. Lee, and Y. J. Kim, "Polydepth: Real-time penetration depth computation using iterative contact-space projection," ACM Transaction on Graphics, vol. 31, no. 1, pp. 5:1-5:14, 2012.
  9. Y. Lee, E. Behar, J.-M. Lien, and Y. J. Kim, "Continuous penetration depth computation for rigid models using dynamic minkowski sums," Computer-Aided Design, vol. 78, pp. 14-25, 2016. https://doi.org/10.1016/j.cad.2016.05.012
  10. P. K. Agarwal, L. J. Guibas, S. Har-peled, A. Rabinovitch, and M. Sharir, "Penetration depth of two convex polytopes in 3d," Nordic Journal of Computing, vol. 7, no. 3, pp. 227-240, 2000.
  11. P. Hachenberger, "Exact minkowksi sums of polyhedra and exact and efficient decomposition of polyhedra into convex pieces," Algorithmica, vol. 55, no. 2, pp. 329-345, 2009. https://doi.org/10.1007/s00453-008-9219-6
  12. L. Zhang, Y. J. Kim, and D. Manocha, "A fast and practical algorithm for generalized penetration depth computation," in Proceedings of Robotics: Science and Systems Conference, 2007.
  13. D. Halperin, "Arrangements," in Handbook of Discrete and Computational Geometry. CRC Press, Inc., 1997, pp. 389-412.
  14. M. Tang and Y. J. Kim, "Interactive generalized penetration depth computation for rigid and articulated models using object norm," ACM Transactions on Graphics, vol. 33, no. 1, pp. 1:1-1:15, 2014.
  15. J. Allard, F. Faure, H. Courtecuisse, F. Falipou, C. Duriez, and P. G. Kry, "Volume contact constraints at arbitrary resolution," ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010), vol. 29, no. 4, pp. 82:1-82:10, 2010.
  16. T. Lozano-Perez, "Spatial planning: A configuration space approach," IEEE Transactions on Computers, vol. 32, no. 2, pp. 108-120, 1983.
  17. C. L. Bajaj and T. K. Dey, "Convex decomposition of polyhedra and robustness," SIAM Journal on Computing, vol. 21, no. 2, pp. 339-26, 1992. https://doi.org/10.1137/0221025
  18. G. Varadhan and D. Manocha, "Accurate minkowski sum approximation of polyhedral models," Graphical Models, vol. 68, no. 4, pp. 343-355, 2006. https://doi.org/10.1016/j.gmod.2005.11.003
  19. L. Guibas, L. Ramshaw, and J. Stolfi, "A kinetic framework for computational geometry," in Proceedings of the 24th Annual Symposium on Foundations of Computer Science, 1983, pp. 100-111.
  20. P. K. Ghosh, "A unified computational framework for minkowski operations," Computers & Graphics, vol. 17, no. 4, pp. 357-378, 1993. https://doi.org/10.1016/0097-8493(93)90023-3
  21. R. Wein, "Exact and efficient construction of planar minkowski sums using the convolution method," in Proceedings of 14th Annual European Symposium. Springer Berlin Heidelberg, 2006, pp. 829-840.
  22. J.-M. Lien, "A simple method for computing minkowski sum boundary in 3d using collision detection," in Algorithmic Foundation of Robotics VIII: Selected Contributions of the Eight International Workshop on the Algorithmic Foundations of Robotics. Springer Science&Business Media, 2010, pp. 401-415.
  23. J.-M. Lien, "Covering minkowski sum boundary using points with applications," Computer Aided Geometric Design, vol. 25, no. 8, pp. 652-666, 2008. https://doi.org/10.1016/j.cagd.2008.06.006
  24. J. Pan, X. Zhang, and D. Manocha, "Efficient penetration depth approximation using active learning," ACM Transactions on Graphics, vol. 32, no. 6, pp. 191:1-191:12, 2013.
  25. M. Tang, Y. J. Kim, and D. Manocha, "C2a: Controlled conservative advancement for continuous collision detection of polygonal models," in Proceedings of International Conference on Robotics and Automation, 2009.