DOI QR코드

DOI QR Code

Position Based Triangulation for High Performance Particle Based Fluid Simulation

위치 기반 삼각화를 이용한 입자 기반 유체 시뮬레이션 가속화 기법

  • Received : 2016.12.05
  • Accepted : 2017.03.07
  • Published : 2017.03.07

Abstract

This paper proposes a novel acceleration method for particle based large scale fluid simulation. Traditional particle-based fluid simulation has been implemented by interacting with physical quantities of neighbor particles through the Smoothed Particle Hydrodynamics(SPH) technique[1]. SPH method has the characteristic that there is no visible change compared to the computation amount in a part where the particle movement is small, such as a calm surface or inter-fluid. This becomes more prominent as the number of particles increases. Previous work has attempted to reduce the amount of spare computation by adaptively dividing each part of the fluid. In this paper, we propose a technique to calculate the motion of the entire particles by using the physical quantities of the near sampled particles by sampling the particles inside the fluid at regular intervals and using them as reference points of the fluid motion. We propose a technique to adaptively generate a triangle map based on the position of the sampled particles in order to efficiently search for nearby particles, and we have been able to interpolate the physical quantities of particles using the barycentric coordinate system. The proposed acceleration technique does not perform any additional correction for two classes of fluid particles. Our technique shows a large improvement in speed as the number of particles increases. The proposed technique also does not interfere with the fine movement of the fluid surface particles.

본 논문은 입자 기반 대규모 유체 시뮬레이션의 가속화 기법을 새롭게 제안한다. 전통적인 입자 기반 유체 시뮬레이션은 SPH(Smoothed Particle Hydrodynamics)기법[1]을 통해 인접 입자와 물리량을 상호작용하는 방식으로 이루어졌다. 이러한 방식은 잔잔한 표면이나 유체 내부와 같이 입자의 움직임이 적은 부분에서는 연산량에 비해 가시적인 변화를 보이지 않는다는 특성이 있다. 이러한 현상은 입자의 개수가 많아질수록 두드러지게 나타난다. 기존 연구에서는 유체의 각 부분을 적응적으로 나눔으로써 낭비되는 연산량을 줄이려는 시도를 했다. 본 논문은 대규모 시뮬레이션에 적합한 입자 기반 유체 시뮬레이션 기법을 제안한다. 시뮬레이션에서 사용되는 모든 입자를 유체 움직임의 기준이 되는 샘플링 입자와 샘플링 입자에 의해 움직임이 결정되는 보간 입자로 분류하고 샘플링 입자에 의해 생성되는 삼각형 맵과 무게중심 좌표계를 이용한 보간 방법을 통해 연산 시간을 단축하는 기법을 제안한다. 우리의 기법은 입자의 개수가 많을수록 더욱 효율적이며 유체 표면의 세밀한 움직임 또한 표현하는 것이 가능하다.

Keywords

Acknowledgement

Grant : 고성능컴퓨팅(HPC) 기반 렌더링 솔루션 개발

Supported by : 한국연구재단, 정보통신기술연구진흥센터

References

  1. M. Muller, D. Charypar, and M. Gross, "Particle-based fluid simulation for interactive applications," in Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 154-159, 2003.
  2. X. Nie, L. Chen, and T. Xiang, "An efficient sleepy algorithm for particle-based fluids," International Journal of Computer Games Technology, vol. 2014, p. 13, 2014.
  3. P.-L. Manteaux, F. Faure, S. Redon, and M.-P. Cani, "Exploring the use of adaptively restrained particles for graphics simulations," in Workshop on Virtual Reality Interaction and Physical Simulation, pp. 17-24, 2013.
  4. M. Desbrun and M.-P. Cani, "Space-time adaptive simulation of highly deformable substances," Ph.D. dissertation, INRIA, 1999.
  5. B. Adams, M. Pauly, R. Keiser, and L. J. Guibas, "Adaptively sampled particle fluids," in ACM Transactions on Graphics (TOG), vol. 26, no. 3, p. 48, 2007. https://doi.org/10.1145/1276377.1276437
  6. B. Solenthaler and M. Gross, "Two-scale particle simulation," in ACM Transactions on Graphics (TOG), vol. 30, no. 4, p. 81, 2011.
  7. F. Losasso, F. Gibou, and R. Fedkiw, "Simulating water and smoke with an octree data structure," in ACM Transactions on Graphics (TOG), vol. 23, no. 3, pp. 457-462, 2004. https://doi.org/10.1145/1015706.1015745
  8. B. M. Klingner, B. E. Feldman, N. Chentanez, and J. F. O'brien, "Fluid animation with dynamic meshes," in ACM Transactions on Graphics (TOG), vol. 25, no. 3, pp. 820-825, 2006. https://doi.org/10.1145/1141911.1141961
  9. F. Ferstl, R. Ando, C. Wojtan, R. Westermann, and N. Thuerey, "Narrow band flip for liquid simulations," in Computer Graphics Forum, vol. 35, no. 2, pp. 225-232, 2016. https://doi.org/10.1111/cgf.12825
  10. J.-G. Lim, B.-J. Kim, and J.-M. Hong, "Water simulation using a responsive surface tracking for flow-type changes," The Visual Computer, vol. 32, no. 5, pp. 641-651, 2016. https://doi.org/10.1007/s00371-015-1080-4
  11. R. Ando, N. Thurey, and C. Wojtan, "Highly adaptive liquid simulations on tetrahedral meshes," ACM Transactions on Graphics (TOG), vol. 32, no. 4, p. 103, 2013.
  12. J. Stam, "Stable fluids," in Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 121-128, 1999.
  13. J. J. Monaghan, "Smoothed particle hydrodynamics," Annual review of astronomy and astrophysics, vol. 30, pp. 543-574, 1992. https://doi.org/10.1146/annurev.aa.30.090192.002551
  14. J. J. Monaghan, "Smoothed particle hydrodynamics," Reports on progress in physics, vol. 68, no. 8, p. 1703, 2005. https://doi.org/10.1088/0034-4885/68/8/R01