DOI QR코드

DOI QR Code

Relation between jittering from compensation for latency and VR sickness

가상현실 렌더링 지연시간 보상에 따른 떨림 현상과 멀미 간 관련성 연구

  • Yoon, Wonbae (Department of Computer Science and Engineering. Korea University) ;
  • Han, JungHyun (Department of Computer Science and Engineering. Korea University)
  • Received : 2016.11.07
  • Accepted : 2017.03.07
  • Published : 2017.03.07

Abstract

For popularization of virtual reality hardwares, VR sickness come from latency is huge problem. To reduce latency, most of the HMDs use cable for video transmission. However, cable causes spatial limitation that disturb user experience. For maximize user's immersion, wireless video transmission system is necessary. Unfortunately, wireless video transmission's latency is much longer than cable's latency. Prediction algorithms may reduce latency but cause jittering effect as a side effect. This paper experiment how jittering effect affects VR sickness. The result of experiment shows jittering effect make vr sickness worse. Future research about prediction algorithm should consider both prediction error and jittering effect.

가상현실 기기의 지연시간이 유발하는 멀미는 가상현실 대중화에 큰 걸림돌이었다. 이 지연시간을 단축하기 위하여 대부분의 HMD 기기들은 PC와 HMD의 영상 전송에 유선 케이블을 사용하고 있다. 그러나 유선 케이블은 공간상의 제약을 주어 사용자의 몰입을 방해하고 불편함을 느끼게 한다. 사용자가 가상현실에서 느끼는 몰입감을 극대화 하기 위해서는 무선 영상 전송 시스템이 필요하다. 그러나 무선 영상 전송 시스템은 유선 케이블에 비하여 영상이 전송되는데 더 긴 시간이 소모되어 지연시간이 늘어나게 된다. 이렇게 늘어난 지연시간은 사용자가 경험하는 가상현실 멀미에 악영향을 준다. 늘어난 지연시간은 예측 알고리즘을 통하여 줄일 수 있으나 긴 지연시간에 대한 예측 알고리즘은 떨림 현상을 야기한다. 이러한 떨림 현상이 사용자의 가상현실 멀미에 어떠한 영향을 미치는지에 대한 연구는 이루어지지 않았다. 본 논문에서는 예측으로 인하여 발생하는 떨림 현상이 사용자의 가상현실 멀미를 심화시키는 것을 실험을 통해 증명했다. 앞으로의 예측 알고리즘은 떨림 현상 또한 고려하여 설계되어야 한다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. S. M. LaValle, A. Yershova, M. Katsev, and M. Antonov, "Head tracking for the oculus rift," in Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014, pp. 187-194.
  2. B. D. Adelstein, J. Y. Jung, and S. R. Ellis, "Discriminability of prediction artifacts in a time-delayed virtual environment," in Proc. Solid Freeform Fabrication Sym, 2000, pp. 499-502.
  3. L. McMillan and G. Bishop, "Head-tracked stereoscopic display using image warping," in PROCEEDINGS SPIE, VOLUME 2409, 1995, pp. 21-30.
  4. R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal, "Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness," The international journal of aviation psychology, vol. 3, no. 3, pp. 203-220, 1993. https://doi.org/10.1207/s15327108ijap0303_3
  5. J. J. LaViola Jr, "A discussion of cybersickness in virtual environments," ACM SIGCHI Bulletin, vol. 32, no. 1, pp. 47-56, 2000. https://doi.org/10.1145/333329.333344
  6. F. Bonato, A. Bubka, S. Palmisano, D. Phillip, and G. Moreno, "Vection change exacerbates simulator sickness in virtual environments," Presence: Teleoperators and Virtual Environments, vol. 17, no. 3, pp. 283-292, 2008. https://doi.org/10.1162/pres.17.3.283
  7. B. Keshavarz and S. Berti, "Integration of sensory information precedes the sensation of vection: a combined behavioral and event-related brain potential (erp) study," Behavioural brain research, vol. 259, pp. 131-136, 2014. https://doi.org/10.1016/j.bbr.2013.10.045
  8. H. B.-L. Duh, D. E. Parker, and T. A. Furness, "An "independent visual background" reduced balance disturbance envoked by visual scene motion: implication for alleviating simulator sickness," in Proceedings of the SIGCHI Conference on Human factors in computing systems. ACM, 2001, pp. 85-89.
  9. J. J.-W. Lin, H. Abi-Rached, D.-H. Kim, D. E. Parker, and T. A. Furness, "A "natural" independent visual background reduced simulator sickness," in Proceedings of the human factors and ergonomics society annual meeting. SAGE Publications, 2002, pp. 2124-2128.
  10. P. DiZio and J. R. Lackner, "Circumventing side effects of immersive virtual environments," in HCI (2), 1997, pp. 893-896.
  11. S. Jennings, L. D. Reid, G. Craig, and R. Kruk, "Time delays in visually coupled systems during flight test and simulation," Journal of aircraft, vol. 41, no. 6, pp. 1327-1335, 2004. https://doi.org/10.2514/1.449
  12. K. Mania, B. D. Adelstein, S. R. Ellis, and M. I. Hill, "Perceptual sensitivity to head tracking latency in virtual environments with varying degrees of scene complexity," in Proceedings of the 1st Symposium on Applied perception in graphics and visualization. ACM, 2004, pp. 39-47.
  13. J. Liang, C. Shaw, and M. Green, "On temporal-spatial realism in the virtual reality environment," in Proceedings of the 4th annual ACM symposium on User interface software and technology. ACM, 1991, pp. 19-25.
  14. J. S. Goddard and M. A. Abidi, "Pose and motion estimation using dual quaternion-based extended kalman filtering," in Photonics West'98 Electronic Imaging. International Society for Optics and Photonics, 1998, pp. 189-200.
  15. H. Himberg and Y. Motai, "Head orientation prediction: delta quaternions versus quaternions," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 39, no. 6, pp. 1382-1392, 2009. https://doi.org/10.1109/TSMCB.2009.2016571
  16. J. J. LaViola, "Double exponential smoothing: An alternative to kalman filter-based predictive tracking," in Proceedings of the Workshop on Virtual Environments 2003, ser. EGVE '03. New York, NY, USA: ACM, 2003, pp. 199-206. [Online]. Available: http://doi.acm.org/10.1145/769953.769976
  17. J.-R.Wu and M. Ouhyoung, "A 3d tracking experiment on latency and its compensation methods in virtual environments," in Proceedings of the 8th annual ACM symposium on User interface and software technology. ACM, 1995, pp. 41-49.
  18. V. Oculus, "Oculus rift-virtual reality headset for 3d gaming," URL: http://www.oculusvr.com, 2012.