DOI QR코드

DOI QR Code

Characterization and Antioxidant Activity of Gold Nanoparticles Synthesized using Bambusae Caulis in Taeniam extract

죽여 추출물로 합성한 금 나노 입자의 특성과 항산화 활성

  • Park, Jin Oh (Department of Nano Fusion Technology, Graduate School, Pusan National University) ;
  • Park, Geuntae (Department of Nano Fusion Technology, Graduate School, Pusan National University)
  • 박진오 (부산대학교 대학원 나노융합기술학과) ;
  • 박근태 (부산대학교 대학원 나노융합기술학과)
  • Received : 2016.12.09
  • Accepted : 2017.02.06
  • Published : 2017.02.28

Abstract

Green synthesis of gold nanoparticles(GNPs) considered more ecofriendly and cost effective than other chemical methods use of dangerous reagents and solvents, improved material and energy efficiency and enhanced design of non-toxic products. In this study, we developed a green synthesis method for using Caulis in Taeniam (BCT). BCT were characterized by UV-vis, Zetasizer, TEM, XRD, and FTIR. The antioxidant activity of BCT was determined by DPPH and ABTS radical-scavenging assays, and heme oxygenase-1 induction in RAW 264.7 macrophages. The resulting BCT appeared spherical with an average diameter of 67.171.39 nm The aAntioxidant activity was increased in a dependent manner. To conclude, the green synthesis of BCT-GNPs was successful, and it appers to be useful in the for future applications.

Keywords

References

  1. Ahmed, A., Senapati, S., Khan, M. I., Kumar, R., Srinivas, V., Sastry, M., 2003, Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species, Nanotech-nology, 14, 824-828. https://doi.org/10.1088/0957-4484/14/7/323
  2. Ahmed, S., Annu, I. S., Yudha, S. S., 2016, Biosynthesis of gold nanoparticles : A Green approach, J. of Photochemistry and Photobiology B: Biology, 161, 141-153. https://doi.org/10.1016/j.jphotobiol.2016.04.034
  3. Anuradha, J., Abbasi, T., Abbasi, S. A., 2015, An Eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (Pistia stratiotes L.), J. of Adavanced Research, 6(5), 711-720. https://doi.org/10.1016/j.jare.2014.03.006
  4. Aueviriyavit, S., Phummiratch, D., Maniratanachote, R., 2014, Mechanistic study on the biological effects of silver and gold nanoparticles in caco-2 cells Induction of the Nrf2/HO-1 pathway by high concentrations of silver nanoparticles, Toxicol. Lett., 224(1), 73-83. https://doi.org/10.1016/j.toxlet.2013.09.020
  5. Chae, S. Y., Park, S. Y., Park, J. O., Lee, K. J., Park, G., 2016, Gardenia jasminoides extract-capped gold nanoparticles reverse hydrogen peroxide-induced premature senescence, J. of Photochemistry & Photobiology, B: Biology, 164, 204-211. https://doi.org/10.1016/j.jphotobiol.2016.09.033
  6. Guo, J., O'Driscoll, C. M., Holmes, J. D., Rahme, K., 2016, Bioconjugated gold nanoparticles enhance cellular uptake : A Proof of concept study for siRNA delivery in prostate cancer cells, Int. J. Pharm., 509(1-2), 16-27. https://doi.org/10.1016/j.ijpharm.2016.05.027
  7. Khan, A. U., Yuan, Q., Wei, Y., Khan, G. M., 2016, Photocatalytic and antibacterial response of biosynthesized gold nanoparticles, J. of Photochemistry and Photobiology B: Biology, 162, 273-277. https://doi.org/10.1016/j.jphotobiol.2016.06.055
  8. Lee, J. K., Kim, S. C., Kim, H. J., Lee, C. G., Ju, C. H., Lee, L. C., 2003, A Study on the zeta potential measurement and the stability analysis of nano fluids using a particle image processing system, J. of ILASS-Korea, 8(1), 16-22.
  9. Manivasagan, P., Bharathiraja, S., Bui, N. Q., Jang, B., Oh, Y., Lim, I. G., Oh, J., 2016, Doxorubicin-loaded fucoidan capped old nanoparticles for drug delivery and photoacoustic imaging, Int. J. Biol. Macromol., 91, 578-588. https://doi.org/10.1016/j.ijbiomac.2016.06.007
  10. Muthukumar, T., Sudhakumari, S. B., Aravinthan, A., Sastry, T. P., Kim, J. H., 2016, Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects, Process Biochemistry, 51(3), 384-391. https://doi.org/10.1016/j.procbio.2015.12.017
  11. Nakkala, J. R., Bhagat, E., Suchiang, K., Sadras, S. R., 2015, Comparative study of antioxidant and catalytic activity of silver and gold nanoparticles synthesized from costus pictus leaf extract, J. of Materials Science & Technology, 31(10), 986-994. https://doi.org/10.1016/j.jmst.2015.07.002
  12. Nune, S. K., Chanda, N., Shukla, R., Katti, K., Kulkami, R. R., Thilakavathi, M. S., Kannan, R., Katti, K. V., 2009, Green nanotechnology from tea : Phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles, J. Mater. Chem., 19(19), 2912-2920. https://doi.org/10.1039/b822015h
  13. Oh, J. H., Son, M. Y., Choi, M. S., Kim, S., Choi, A. Y., Lee, H. A., Kim, K. S., Kim, J., Song, C. W., 2016, Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles, Toxicology and Applied Pharmacology, 299, 8-23. https://doi.org/10.1016/j.taap.2015.11.004
  14. Pallotta, A., Boudier, A., Leroy, P., Clarot, I., 2016, Characterization and stability of gold nanoparticles depending on their surface chemistry : Contribution of capillary zone electrophoresis to a quality control, J. of Chromatography A, 1461, 179-184. https://doi.org/10.1016/j.chroma.2016.07.031
  15. Razzaq, H., Saira, F., Yaqub, A., Qureshi, R., Mumtaz, M., Saleemi, S., 2016, Interaction of gold nanoparticles with free radicals and their role in enhancing the scavenging activity of ascorbic acid, J. of Photochemistry and Photobiology B: Biology, 161, 266-272. https://doi.org/10.1016/j.jphotobiol.2016.04.003
  16. Saquib, Q., Al-Khedhairy, A. A., Ahmad, J., Siddiqui, M. A., Dwivedi, S., Khan, S. T., 2013, Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic poptotic pathway in WISH cells, Toxicol. Appl. Pharmacol., 273(2), 289-297. https://doi.org/10.1016/j.taap.2013.09.001
  17. Sathiskumar, G., Pradeep, K., Jha, V. V., Rajkuberan, C., Jeyaraj, M., Selvakumar, M., Rakhi, J., Sivaramakrishnan, S., 2016, Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity, J. of Molecular Liquids, 215, 229-236. https://doi.org/10.1016/j.molliq.2015.12.043
  18. Shaheen, T. I., El-Naggar, M. E., Hussein, J. S., El-Bana, M., Emara, E., El-Khayat, Z., Fouda, M. M. G., Ebaid, H., Hebeish, A., 2016, Antidiabetic assessment : In vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats, Biomedicine & Pharmacotherapy, 83, 865-875. https://doi.org/10.1016/j.biopha.2016.07.052
  19. Shi, Z., Niu, Y., Wang, Q., Shi, L., Huicai, G., Liu, Y., Zhu, Y., Liu, S., Liu, C., Chen, X., Zhang, R., 2015, Reduction of DNA damage induced by titanium dioxide nanoparticles through Nrf2 in vitro and in vivo, J. Hazard Mater., 298, 310-319. https://doi.org/10.1016/j.jhazmat.2015.05.043
  20. Tulodziecka, A., Szydlowska-Czerniak, A., 2016, Development of a novel gold nanoparticle-based method to determine antioxidant capacity of brassica oilseeds, white flakes and meal, Food Chem., 208, 142-149. https://doi.org/10.1016/j.foodchem.2016.03.105
  21. Yakub, N., Kanase, S. S., 2016, Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation, Arabian J. of Chemistry, in Press, Available online.
  22. Wongkrongsak, S., Tangthong, T., Pasanphan, W., 2016, Electron beam induced water-soluble silk fibroin nanoparticles as a natural antioxidant and reducing agent for a green synthesis of gold nanocolloid, Radiation Physics and Chemisry, 118, 27-34. https://doi.org/10.1016/j.radphyschem.2015.03.020