References
- Wahba IM, Mak RH. Obesity and obesity-initiated metabolic syndrome: mechanistic links to chronic kidney disease. Clin J Am Soc Nephrol 2007;2:550-62. https://doi.org/10.2215/CJN.04071206
- Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008;9:367-77. https://doi.org/10.1038/nrm2391
- Cornelius P, MacDougald OA, Lane MD. Regulation of adipocyte development. Annu Rev Nutr 1994;14:99-129. https://doi.org/10.1146/annurev.nu.14.070194.000531
- MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 1995;64:345-73. https://doi.org/10.1146/annurev.bi.64.070195.002021
- Mandrup S, Lane MD. Regulating adipogenesis. J Biol Chem 1997;272:5367-70. https://doi.org/10.1074/jbc.272.9.5367
- Soukas A, Socci ND, Saatkamp BD, Novelli S, Friedman JM. Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J Biol Chem 2001;276:34167-74. https://doi.org/10.1074/jbc.M104421200
- Koh YK, Lee MY, Kim JW, Kim M, Moon JS, Lee YJ, Ahn YH, Kim KS. Lipin1 is a key factor for the maturation and maintenance of adipocytes in the regulatory network with CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma 2. J Biol Chem 2008;283:34896-906. https://doi.org/10.1074/jbc.M804007200
- Bonnefont-Rousselot D. Obesity and oxidative stress: potential roles of melatonin as antioxidant and metabolic regulator. Endocr Metab Immune Disord Drug Targets 2014;14:159-68. https://doi.org/10.2174/1871530314666140604151452
- Liu GS, Chan EC, Higuchi M, Dusting GJ, Jiang F. Redox mechanisms in regulation of adipocyte differentiation: beyond a general stress response. Cells 2012;1:976-93. https://doi.org/10.3390/cells1040976
- Eriksson JW. Metabolic stress in insulin's target cells leads to ROS accumulation - a hypothetical common pathway causing insulin resistance. FEBS Lett 2007;581:3734-42. https://doi.org/10.1016/j.febslet.2007.06.044
- Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shinomura J. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004;114:1752-61. https://doi.org/10.1172/JCI21625
- Lee H, Lee YJ, Choi H, Ko EH, Kim JW. Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem 2009;284:10601-9. https://doi.org/10.1074/jbc.M808742200
- Darlington GJ, Ross SE, MacDougald OA. The role of C/EBP genes in adipocyte differentiation. J Biol Chem 1998;273:30057-60. https://doi.org/10.1074/jbc.273.46.30057
- Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001;22:153-83.
- Bost F, Aouadi M, Caron L, Binetruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie 2005;87:51-6. https://doi.org/10.1016/j.biochi.2004.10.018
- Prusty D, Park BH, Davis KE, Farmer SR. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes. J Biol Chem 2002;277:46226-32. https://doi.org/10.1074/jbc.M207776200
- Park BH, Qiang L, Farmer SR. Phosphorylation of C/EBPbeta at a consensus extracellular signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes. Mol Cell Biol 2004;24:8671-80. https://doi.org/10.1128/MCB.24.19.8671-8680.2004
- Glade MJ. Food, nutrition, and the prevention of cancer: a global perspective. American Institute for Cancer Research/World Cancer Research Fund, American Institute for Cancer Research, 1997. Nutrition 1999;15:523-6. https://doi.org/10.1016/S0899-9007(99)00021-0
- Schmidt BM, Ribnicky DM, Lipsky PE, Raskin I. Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol 2007;3:360-6. https://doi.org/10.1038/nchembio0707-360
- Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 2002;113:71S-88S. https://doi.org/10.1016/S0002-9343(01)00995-0
- Jia L, Zhao Y. Current evaluation of the millennium phytomedicinedginseng (I): etymology, pharmacognosy, phytochemistry, market and regulations. Curr Med Chem 2009;16:2475-84. https://doi.org/10.2174/092986709788682146
- Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
- Hwang CR, Lee SH, Jang GY, Hwang IG, Kim HY, Woo KS, Lee J, Jeong HS. Changes in ginsenoside compositions and antioxidant activities of hydroponic-cultured ginseng roots and leaves with heating temperature. J Ginseng Res 2014;38:180-6. https://doi.org/10.1016/j.jgr.2014.02.002
- Lee HM, Lee OH, Kim KJ, Lee BY. Ginsenoside Rg1 promotes glucose uptake through activated AMPK pathway in insulin-resistant muscle cells. Phytother Res 2012;26:1017-22. https://doi.org/10.1002/ptr.3686
- Yu SH, Huang HY, Korivi M, Hsu MF, Huang CY, Hou CW, Chen CY, Kao CL, Lee RP, Kuo CH. Oral Rg1 supplementation strengthens antioxidant defense system against exercise-induced oxidative stress in rat skeletal muscles. J Int Soc Sports Nutr 2012;9:23. https://doi.org/10.1186/1550-2783-9-23
- Park S, Ahn IS, Kwon DY, Ko BS, Jun WK. Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance beta-cell insulin secretion and viability in Min6 cells via PKA-dependent pathways. Biosci Biotechnol Biochem 2008;72:2815-23. https://doi.org/10.1271/bbb.80205
- Gale SE, Frolov A, Han X, Bickel PE, Cao L, Bowcock A, Schaffer JE, Ory DS. A regulatory role for 1-acylglycerol-3-phosphate-O-acyltransferase 2 in adipocyte differentiation. J Biol Chem 2006;281:11082-9. https://doi.org/10.1074/jbc.M509612200
- Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 2009;15:914-20. https://doi.org/10.1038/nm.1964
- Sethi JK, Hotamisligil GS. The role of TNF alpha in adipocyte metabolism. Semin Cell Dev Biol 1999;10:19-29. https://doi.org/10.1006/scdb.1998.0273
- Chen HC, Smith SJ, Tow B, Elias PM, Farese Jr RV. Leptin modulates the effects of acyl CoA:diacylglycerol acyltransferase deficiency on murine fur and sebaceous glands. J Clin Invest 2002;109:175-81. https://doi.org/10.1172/JCI0213880
- Kim HE, Bae E, Jeong DY, Kim MJ, Jin WJ, Park SW, Han GS, Carman GM, Koh E, Kim KS. Lipin1 regulates PPARgamma transcriptional activity. Biochem J 2013;453:49-60. https://doi.org/10.1042/BJ20121598
- Tormos KV, Anso E, Hamanaka RB, Eisenbart J, Joseph J, Kalyanaraman B, Chandel NS. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab 2011;14:537-44. https://doi.org/10.1016/j.cmet.2011.08.007
- Mouche S, Mkaddem SB, Wang W, Katic M, Tseng YH, Carnesecchi S, Steger K, Meier CA, Foti M, Muzzin P, et al. Reduced expression of the NADPH oxidase NOX4 is a hallmark of adipocyte differentiation. Biochim Biophys Acta 2007;1773:1015-27. https://doi.org/10.1016/j.bbamcr.2007.03.003
- Kanda Y, Hinata T, Kang SW, Watanabe Y. Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci 2011;89:250-8. https://doi.org/10.1016/j.lfs.2011.06.007
- Li X, Kim JW, Gronborg M, Urlaub H, Lane MD, Tang QQ. Role of cdk2 in the sequential phosphorylation/activation of C/EBPbeta during adipocyte differentiation. Proc Natl Acad Sci U S A 2007;104:11597-602. https://doi.org/10.1073/pnas.0703771104
- Tang QQ, Lane MD. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev 1999;13:2231-41. https://doi.org/10.1101/gad.13.17.2231
- Tang QQ, Lane MD. Role of C/EBP homologous protein (CHOP-10) in the programmed activation of CCAAT/enhancer-binding protein-beta during adipogenesis. Proc Natl Acad Sci U S A 2000;97:12446-50. https://doi.org/10.1073/pnas.220425597
- Lowe CE, O'Rahilly S, Rochford JJ. Adipogenesis at a glance. J Cell Sci 2011;124:2681-6. https://doi.org/10.1242/jcs.079699
- Poulos SP, Dodson MV, Hausman GJ. Cell line models for differentiation: preadipocytes and adipocytes. Exp Biol Med 2010;235:1185-93. https://doi.org/10.1258/ebm.2010.010063
- Shimizu T, Nojiri H, Kawakami S, Uchiyama S, Shirasawa T. Model mice for tissue-specific deletion of the manganese superoxide dismutase gene. Geriatr Gerontol Int 2010;10:S70-9. https://doi.org/10.1111/j.1447-0594.2010.00604.x
- Fransen M, Nordgren M, Wang B, Apanasets O. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 2012;1822:1363-73. https://doi.org/10.1016/j.bbadis.2011.12.001
- Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007;87:245-313. https://doi.org/10.1152/physrev.00044.2005
- Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001;81:807-69. https://doi.org/10.1152/physrev.2001.81.2.807
- Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature 2002;420:333-6. https://doi.org/10.1038/nature01137
Cited by
- Soshiho-Tang Aqueous Extract Exerts Antiobesity Effects in High Fat Diet-Fed Mice and Inhibits Adipogenesis in 3T3-L1 Adipocytes vol.2016, pp.None, 2017, https://doi.org/10.1155/2016/2628901
- Herbal Medicine for the Treatment of Obesity: An Overview of Scientific Evidence from 2007 to 2017 vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/8943059
- Anti-Adipogenic Effects on 3T3-L1 Cells and Zebrafish by Tanshinone IIA vol.18, pp.10, 2017, https://doi.org/10.3390/ijms18102065
- Chinese Medicine in the Battle Against Obesity and Metabolic Diseases vol.9, pp.None, 2017, https://doi.org/10.3389/fphys.2018.00850
- Spilanthol from Traditionally Used Spilanthes acmella Enhances AMPK and Ameliorates Obesity in Mice Fed High-Fat Diet vol.11, pp.5, 2017, https://doi.org/10.3390/nu11050991
- Extension of Drosophila lifespan by Korean red ginseng through a mechanism dependent on dSir2 and insulin/IGF-1 signaling vol.11, pp.21, 2017, https://doi.org/10.18632/aging.102387
- miRNAs and Novel Food Compounds Related to the Browning Process vol.20, pp.23, 2017, https://doi.org/10.3390/ijms20235998
- A Combination of Korean Red Ginseng Extract and Glycyrrhiza glabra L. Extract Enhances Their Individual Anti-Obesity Properties in 3T3-L1 Adipocytes and C57BL/6J Obese Mice vol.23, pp.3, 2020, https://doi.org/10.1089/jmf.2019.4660
- Gintonin-Enriched Fraction Suppresses Heat Stress-Induced Inflammation through LPA Receptor vol.25, pp.5, 2017, https://doi.org/10.3390/molecules25051019
- Sulforaphene Suppresses Adipocyte Differentiation via Induction of Post-Translational Degradation of CCAAT/Enhancer Binding Protein Beta (C/EBPβ) vol.12, pp.3, 2017, https://doi.org/10.3390/nu12030758
- Ginsenoside Rg1 as a Potential Regulator of Hematopoietic Stem/Progenitor Cells vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/4633270
- Effect of Panax notoginseng Saponins and Major Anti-Obesity Components on Weight Loss vol.11, pp.None, 2021, https://doi.org/10.3389/fphar.2020.601751