DOI QR코드

DOI QR Code

Synthesis and Characterization of Fluorine-induced, UV Curable Urethane Acrylate Oligomers

불소가 도입된 광경화형 우레탄 아크릴레이트 올리고머의 합성 및 특성분석

  • Received : 2017.07.27
  • Accepted : 2017.09.13
  • Published : 2017.09.30

Abstract

In this study, to develop the adhesives with improved waterproof properties for display application, UV-curable urethane acrylate oligomers containing a fluorine moiety were synthesized from hydrogenated polybutadiene diol (HLBH-P2000), perfluoropolyether diol (HTPFPE), isophorone diisocyanate (IPDI) and 2-hydroxyethyl acrylate (HEA). The properties which were related waterproof performance such as contact angle, surface energy and water vapor transmission ratio (WVTR) of synthesized fluorine induced urethane acrylate oligomers were measured. As the HTPFPE content increased, the contact angle also increased from 97.9 degree to 104.4 degree. The surface energy and WVTR decreased as the HTPFPE content increased. The adhesion strength also decreased according to the HTPFPE content increased, and the adhesion strength reduction had greatly increased as the HTPFPE content increased. The findings of this study will be beneficial for developing waterproofing adhesives in the field of display which has recently been a waterproof issue.

본 연구에서는 방수 성능이 개선된 디스플레이용 접착 소재를 개발하기 위해 불소 화합물을 도입한 Polybutadiene계 우레탄 아크릴레이트 올리고머를 합성하였다. 합성에 적용한 디올은 신뢰성 확보 측면에서 이중결합을 제거한 수첨 폴리부타디엔 디올 (HLBH-P2000)을 적용하였으며, 불소를 함유한 perfluoropolyether (HTPFPE) 디올을 공중합 하는 방법으로 불소 화합물을 올리고머의 주쇄사슬에 도입하였다. 디이소시아네이트는 Isophorone diisocyanate (IPDI)를 사용하여 합성을 진행하고, 마지막으로 2-hydroxyethyl acrylate (HEA)를 말단에 부가하여 불소가 도입된 올리고머를 합성하였다. 합성된 올리고머의 특성 평가 결과, HTPFPE의 함량이 증가할수록 접촉각은 증가하고 표면에너지는 감소하는 결과를 보였으며, 더불어 투습율 (WVTR) 또한 감소함을 확인하였다. 접착력은 HTPFPE의 함량 증가에 따라 감소하는 경향을 보였으며, HTPFPE의 함량이 증가함에 따라 접착력 감소 폭이 크게 증가하는 경향을 보였다. 본 연구의 결과로부터, 최근 이슈가 되고 있는 디스플레이 장치의 방수 소재로 적용이 가능한 접착제로서의 활용이 가능할 것으로 판단된다.

Keywords

References

  1. Liang Hongbo, Ding Jun, Shi Wenfang, Polymer Degradation and Stability 86, 217 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.04.014
  2. Khudyakov Igor V, Swiderski Kenneth W, Greer Robert W, Journal of Applied Polymer Science, 99, 489 (2006). https://doi.org/10.1002/app.22275
  3. Jin-Sang Hwang, Myeong-Hwan Kim, Dong-Sung Seo, Jong-Woo Won, Doo-Kyung Moon, Microelectronics Reliability, 49, 517 (2009). https://doi.org/10.1016/j.microrel.2009.02.001
  4. Dzunuzovic E, Tasic S, Bozic B, Babic D and Dunjic B, Progress in Organic Coatings, 52, 136 (2005). https://doi.org/10.1016/j.porgcoat.2004.10.003
  5. Mehul M. Patel, Chirag J. Patel and Natvar K. Patel, Chemical Science Transactions, 1(2), 289 (2012). https://doi.org/10.7598/cst2012.170
  6. Min-Jeong Cho, Ho-Jong Kang, and Dong-Bok Kim, Journal of Adhesion and Interface, 18(1), 25 (2017). https://doi.org/10.17702/jai.2017.18.1.25
  7. Kim BK, Lee KH, and Kim HD, Journal of Applied Polymer Science, 60, 799 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960509)60:6<799::AID-APP2>3.0.CO;2-E
  8. Feng Jun Hua and Chun Pu Hu, Journal of Applied Polymer Science, 77, 1532 (2000). https://doi.org/10.1002/1097-4628(20000815)77:7<1532::AID-APP14>3.0.CO;2-S
  9. Byoung-Joon Moon and Seok-Ho Hwang, Polymer (Korea), 35(2), 183 (2011). https://doi.org/10.7317/pk.2011.35.2.183
  10. J. W. Yoo and D. S. Kim, Polymer(Korea), 23, 376 (1999).
  11. T. Matynia, R. Kutyla, K. Bukat, and B. Pienkowska, Journal of Applied Polymer Science, 55, 1583 (1995). https://doi.org/10.1002/app.1995.070551109
  12. M. Bajpai, V. Shukla, and A. Kumar, Progress in Organic Coatings, 44, 271 (2002). https://doi.org/10.1016/S0300-9440(02)00059-0
  13. T. Maruno, S. Ishibashi, and K. Nakamura, Journal of Polymer Science, Part A: Polymer Chemistry, 32, 3211 (1994). https://doi.org/10.1002/pola.1994.080321625
  14. T. R. Williams, Journal of Applied Polymer Science, 31, 1293 (1986). https://doi.org/10.1002/app.1986.070310515
  15. Min Ji Choi, Boo Young Jeong, Jung Mi Cheon, Kuenbyeol Park, and Jae Hwan Chun, Journal of Adhesion and Interface, 18(1), 8 (2017). https://doi.org/10.17702/jai.2017.18.1.8
  16. C. Bluestein, Polymer-Plastics Technology and Engineering, 17, 83 (1981). https://doi.org/10.1080/03602558108067700
  17. J.H. Lee, S.D. Hong and Y.H. Kim, Polymer (Korea), 37, 2 (2013).
  18. Tuba Cakir Canak and Ersin Serhatli, Progress in Organic Coatings, 76, 388 (2013). https://doi.org/10.1016/j.porgcoat.2012.10.024
  19. Park JM, Jeon JH, Lee YH, Lee DJ, Park H, Chun HH and Do Kim H, Polymer Billetin, 72(8), 1921 (2015). https://doi.org/10.1007/s00289-015-1380-x
  20. Y.H. Lin, K.H. Liao, N.K. Chou, S.S. Wang, S.H. Chu and K.H. Hsieh, European Polymer Journal, 44(9), 2927 (2008). https://doi.org/10.1016/j.eurpolymj.2008.06.030
  21. Olga Smirnova, Alexey Glazlov, Alexander Yarosh and Alexey Sakharov, Molecules, 21, 904 (2016). https://doi.org/10.3390/molecules21070904
  22. Nahae Kim, Juyoung Kim, Ho-Sun Lim, and Se-Hyun Kim, Journal of Adhesion and Interface, 18(1), 33 (2017). https://doi.org/10.17702/jai.2017.18.1.33
  23. Nahae Kim, Juyoung Kim, Ho-Sun Lim, and Se-Hyun Kim, Journal of Adhesion and Interface, 18(2), 82 (2017).
  24. J.M. Park, Y.H. Lee, H. Park and H.D. Kim, Journal of Applied Polymer Science, 131, 40603 (2014).
  25. Y Yuan and M.S. Shoicher, Macromolecules, 33, 4926 (2000). https://doi.org/10.1021/ma000147a
  26. W. Ming, J. Laven and R. Minde, Macromolecules, 33, 6886 (2000). https://doi.org/10.1021/ma0005771
  27. P. Jannasch, Macromolecules, 14, 3045 (1998).
  28. Yong-Kwang Cho and Won-Ki Lee, Polymer (Korea), 40(3) 439 (2016). https://doi.org/10.7317/pk.2016.40.3.439
  29. Ji-Hyun Hwang, Kyoung-Suk Oh and Nam-Sik Yoon, Textile Coloration and Finishing, 25(1), 30 (2013). https://doi.org/10.5764/TCF.2013.25.1.30
  30. 대한민국 특허, 등록번호 제10-1293803호.