DOI QR코드

DOI QR Code

폐양모/폴리프로필렌 복합재료의 기계적 특성 및 충격강도에 미치는 폐양모섬유의 알칼리처리 또는 실란처리 영향

Influence of Alkali or Silane Treatment of Waste Wool Fiber on the Mechanical Properties and Impact Strength of Waste Wool/Polypropylene Composites

  • 김기현 (금오공과대학교 고분자공학과) ;
  • 조동환 (금오공과대학교 고분자공학과)
  • Kim, Kihyun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Cho, Donghwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 투고 : 2017.07.21
  • 심사 : 2017.09.12
  • 발행 : 2017.09.30

초록

천연섬유강화 복합재료에서 여러 가지 섬유표면 개질을 통해서 천연섬유와 고분자매트릭스 사이에 계면접착과 복합재료 특성을 향상시키고자 하는 많은 연구 노력이 있었다. 본 연구에서는 폐양모섬유 강화 폴리프로필렌 매트릭스 복합재료를 압축성형공정 방법으로 제조하였고, 그들의 기계적 특성 및 충격 특성을 분석하였다. 그 결과, 폐양모/폴리프로필렌 복합재료의 인장 및 굴곡 특성 그리고 충격강도는 수산화나트륨(NaOH)을 이용한 알칼리처리와 3-glycidylpropylsilane(GPS)을 이용한 실란처리와 같은 처리매체에 크게 의존하였다. 실란처리를 한 폐양모섬유를 포함한 복합재료는 알칼리처리를 한 폐양모섬유를 포함한 것보다 더 우수한 기계적 특성과 충격저항성을 나타내었다. 복합재료 파단면은 특성 증가가 폐양모섬유와 폴리프로필렌 매트릭스 사이에 계면결합의 향상에 의한 것임을 정성적으로 뒷받침해주었다.

In a natural fiber-reinforced composite material, many studies have been devoted to improving the interfacial adhesion between natural fiber and polymer matrix and the composite properties through various fiber surface modifications. In the present study, waste wool-reinforced polypropylene matrix composites were fabricated by compression molding and their mechanical and impact properties were characterized. As a result, the tensile and flexural properties and the impact strength of waste wool/polypropylene composites strongly depended on the treatment medium, alkali treatment with sodium hydroxide (NaOH) and silane treatment with 3-glycidylpropylsilane(GPS). The composite with waste wool by silane treatment exhibited higher mechanical properties and impact resistance than that by alkali treatment. The fracture surfaces of the composites support qualitatively the increased properties, showing the improved interfacial bonding between the waste wool and the polypropylene matrix.

키워드

참고문헌

  1. D. Cho, S. G. Lee, W. H. Park, and S. O. Han, Polym. Sci. Technol., 13, 460 (2002).
  2. Y. Pang, S. B. Yoon, J. M. Seo, S. O. Han, and D. Cho, J. Adhes. Interf., 6, 12 (2005).
  3. A. K. Monhanty, M. Misra, and L. T. Drzal, J. Polym. Environ., 1, 19 (2002).
  4. A. N. Netravali and S. Chabba, Materialstoday, April, 22 (2003).
  5. R. Fisher, Compos. Manufact., March, 20(2006).
  6. A. K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999). https://doi.org/10.1016/S0079-6700(98)00018-5
  7. M. Abdelmouleh, S. Boufi, M. N. Belgacem, and A. Dufresne, Compos. Sci. Technol., 67, 1627 (2007). https://doi.org/10.1016/j.compscitech.2006.07.003
  8. T. Nishio, K. Hirao, M. Kotera, K. Nakamae, and H. Inagaki, Compos. Sci. Technol., 63, 1281 (2003). https://doi.org/10.1016/S0266-3538(03)00099-X
  9. K. C. M. Nair, S. Thomas, and G. Groeninckx, Compos. Sci. Technol., 61, 2519 (2001). https://doi.org/10.1016/S0266-3538(01)00170-1
  10. S. M. Lee, D. Cho, W. H. Park, S. G. Lee, S. O. Han, and L. T. Drzal, Compos. Sci. Technol., 65, 647 (2005). https://doi.org/10.1016/j.compscitech.2004.09.023
  11. S. M. Lee, S. O. Han, D. Cho, W. H. Park, and S. G. Lee, Polym. Compos., 12, 479 (2005).
  12. M. Zampaloni, F. Pourboghrat, S. A. Yankovich, B. N. Rodger, J. Moore, L. T. Drzal, A. K. Mohanty, and M. Misra, Composites.: Part A, 35, 363 (2004). https://doi.org/10.1016/j.compositesa.2003.09.015
  13. S. V. Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, Composites., Part A, 35, 371 (2004). https://doi.org/10.1016/j.compositesa.2003.09.016
  14. Y. H. Han, S. O. Han, D. Cho, and H. I. Kim, Compos. Interf., 14, 559 (2007). https://doi.org/10.1163/156855407781291272
  15. M. Zampaloni, F. Pourboghrat, S. A. Yankovich, B. N. Rodger, J. Moore, A. K. Mohanty, M. Misra, and L. T. Drzal, Composites, Part A, 38, 1569 (2007). https://doi.org/10.1016/j.compositesa.2007.01.001
  16. S. J. Kim, J. B. Moon, G. H. Kim, and C. S. Ha, Polym. Testing, 27, 801 (2008). https://doi.org/10.1016/j.polymertesting.2008.06.002
  17. A. K. Mohanty, M. Misra, and L. T. Drzal, Compos. Interf., 8, 313 (2001). https://doi.org/10.1163/156855401753255422
  18. L. Conzatti, F. Giunco, P. Stagnaro, A. Patrucco, C. Tonin, C. Marano, M. Rink, and E. Marsano, Composites: Part A, 61, 51 (2014). https://doi.org/10.1016/j.compositesa.2014.02.005
  19. R. S. Carran, A. Ghosh, and J. M. Dyer, J. Appl. Polym. Sci.,132, 42392 (2015).
  20. K. Kim, D. Cho, and J. H. Kim, J. Adhes. Interf., 9, 16 (2008).
  21. J. Rout, M. Misra, S. S. Tripathy, S. K. Nayak and A. K. Mohanty, Compos. Sci. Technol., 61, 1303 (2001). https://doi.org/10.1016/S0266-3538(01)00021-5
  22. K. Goda. M. S. Sreekala, A. Gomes, T. Kaji, and J. Ohgi, Compos. Sci. Technol., 63, 1241 (2003). https://doi.org/10.1016/S0266-3538(03)00093-9
  23. D. Cho, S. G. Lee, W. H. Park, and S. O. Han, Fiber Technol. Indus., 8, 378 (2004).
  24. S. Huda, T. Drzal, K. Mohanty, and Misra, Compos. Sci. Technol., 68, 424 (2008). https://doi.org/10.1016/j.compscitech.2007.06.022
  25. M. Fransesca, T. Manuel, O. Raquel, and F. Marco, Dental Mater., 22, 1024 (2006). https://doi.org/10.1016/j.dental.2005.11.024
  26. 장병호, 김영석, 하완식, 최영엽, 섬유재료학, 형설출판사 (1999) 5장.
  27. C. Popescu and F.-J. Wortmann, in Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications" Ed. J. Mussig, John Wiley and Sons, Ltd, Publication, West Sussex, Chapter, UK (2010).