DOI QR코드

DOI QR Code

PVK-b-PVP 블록 공중합체의 존재 하에서 안정한 비 수계 그래핀 분산액을 위한 용매-고분자 상호작용에 관한 연구

Solvent-Polymer Interactions for Stable Non-Aqueous Graphene Dispersions in the Presence of PVK-b-PVP Block Copolymer

  • 박경태 (경북대학교 공과대학 응용화학과) ;
  • ;
  • 이향무 (경북대학교 공과대학 응용화학과) ;
  • 김영현 (경북대학교 공과대학 응용화학과) ;
  • 정인우 (경북대학교 공과대학 응용화학과)
  • Park, Kyung Tae (Department of Applied Chemistry, School of Engineering, Kyungpook National University) ;
  • Perumal, Suguna (Department of Applied Chemistry, School of Engineering, Kyungpook National University) ;
  • Lee, Hyang Moo (Department of Applied Chemistry, School of Engineering, Kyungpook National University) ;
  • Kim, Young Hyun (Department of Applied Chemistry, School of Engineering, Kyungpook National University) ;
  • Cheong, In Woo (Department of Applied Chemistry, School of Engineering, Kyungpook National University)
  • 투고 : 2017.07.21
  • 심사 : 2017.09.04
  • 발행 : 2017.09.30

초록

본 연구에서는 poly(N-vinyl carbazole) (PVK), poly(4-vinylpyridine) (PVP), PVK-b-PVP 블록 공중합체를 RAFT 중합법으로 합성하였으며, 이를 이용하여 ethanol, N-methyl-2-pyrrolidone (NMP), dichloromethane (DCM), tetrahydrofuran (THF)와 같은 비 수계 용매에서 그래핀 분산액을 제조하였다. 합성된 고분자의 화학적 구조는 양성자 및 탄소 핵자기 공명 분광기($^1H-$, $^{13}C-NMR$), 크기 배제 크로마토그래피 (size exclusive chromatography, SEC), 시차 주사 열량계 (differential scanning calorimetry, DSC)를 이용하여 분석하였으며, 그래핀 분산액의 분산 안정성은 Turbiscan을 이용하여 시간에 따른 터비스캔 안정성 지수(Turbiscan stability index, TSI)를 측정, 정량적으로 평가하였다. 용매, 고분자, 그래핀의 표면장력(${\sigma}$), 용해도 상수(${\delta}$)를 이용하여 물질간의 상호작용에 대하여 설명하였으며, 이를 바탕으로 용매와 그래핀간의 용해도와 표면장력의 차이가 분산안정성에 큰 영향을 미침을 확인하였다. 그래핀의 분산 안정성이 좋지 못한 ethanol 및 THF 용매 하에서 PVK-b-PVP를 사용하여 그래핀을 분산시킬 경우 낮은 TSI값을 효과적으로 유지할 수 있었으며, 그래핀을 잘 분산시킨다고 알려진 NMP에 비하여 DCM이 더 좋은 그래핀 분산안정성을 보임을 확인하였다.

Poly(N-vinyl carbazole) (PVK) homopolymer, poly(4-vinylpyridine) (PVP) homopolymer, and PVK-b-PVP block copolymer were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and the polymers were used to prepare non-aqueous graphene dispersions with four different solvents, ethanol, N-methyl-2-pyrrolidone (NMP), dichloromethane (DCM), and tetrahydrofuran (THF). $^1H-$ and $^{13}C-NMR$ spectroscopy, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) were carried out to confirm the chemical structure of the polymers. Stability of graphene dispersions was measured by on-line turbidity measurement. Time-dependent Turbiscan Stability Index (TSI) values were interpreted in terms of surface tension (${\sigma}$) and solubility parameter (${\delta}$) among solvents, polymers, and graphene. It was confirmed that the solubilities of polymer and surface tension between solvent and graphene affected the dispersion stability of graphene. PVK-b-PVP block copolymer could effectively maintain the low TSI values of graphene dispersions in ethanol and THF, which have been known as poor solvents for graphene dispersions. It can also be noted that DCM shows good dispersion stability comparable to NMP, which has been known as the best solvent for graphene dispersion.

키워드

참고문헌

  1. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science, 321, 385-388 (2008). https://doi.org/10.1126/science.1157996
  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Girgorieva, A.A. Firsov, Science, 306, 666-669 (2004). https://doi.org/10.1126/science.1102896
  3. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun., 146, 351-355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  4. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev., 110, 132-145 (2010). https://doi.org/10.1021/cr900070d
  5. X. Liang, Z. Fu, S.Y. Chou, Nano Lett,. 7, 3840-3844 (2007). https://doi.org/10.1021/nl072566s
  6. D. Gunlycke, D.A. Areshkin, J. Li, J.W. Mintmire, C.T. White, Nano Lett., 7, 3608-3611 (2007). https://doi.org/10.1021/nl0717917
  7. A. Yu, I. Roes, A. Davies, Z. Chen, Appl. Phys. Lett., 96, 253105-253105 (2010). https://doi.org/10.1063/1.3455879
  8. P.K. Ang, W. Chen, A.T.S. Wee, K.P. Loh, J. Am. Chem. Soc., 130, 14392-14393 (2008). https://doi.org/10.1021/ja805090z
  9. C. Ataca, E. Akturk, S. Ciraci, H. Ustunel, Appl. Phys. Lett., 93, 043123-043123 (2008). https://doi.org/10.1063/1.2963976
  10. C. Chung, Y.K. Kim, D. Shin, S.R. Ryoo, B.H. Hong, D.H. Min, Chem. Res., 46, 2211-2224 (2013). https://doi.org/10.1021/ar300159f
  11. G. Gu, S. Nie, R.M. Feenstra, R.P. Devaty, W.J. Choyke, W.K. Chan, M.G. Kane, Appl. Phys. Lett., 90, 253507-253507 (2007). https://doi.org/10.1063/1.2749839
  12. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett., 9, 30-35 (2009). https://doi.org/10.1021/nl801827v
  13. A. Ciesielskia, P. Samorì, Chem. Soc. Rev., 43, 381-398 (2014). https://doi.org/10.1039/C3CS60217F
  14. D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S.B. Bon, M. Piccinini, J. Illescas, A. Mariani, J. Mater. Chem., 21, 3428-3431 (2011). https://doi.org/10.1039/C0JM02461A
  15. J.N. Coleman, Adv. Funct. Mater., 19(23), 3680-3695 (2009). https://doi.org/10.1002/adfm.200901640
  16. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nat. Nanotechnol., 3, 563-568 (2008). https://doi.org/10.1038/nnano.2008.215
  17. Y. Hernandez, M. Lotya, D. Rickard, S.D. Bergin, J.N. Coleman, Langmuir, 26, 3208-3213 (2010). https://doi.org/10.1021/la903188a
  18. W. Qian, R. Hao, Y.L. Hou, Y. Tian, C.M. Shen, H.J. Gao, X.L. Liang, Nano Res., 2, 706-712 (2009). https://doi.org/10.1007/s12274-009-9074-z
  19. X.Y. Zhang, A.C. Coleman, N. Katsonis, W.R. Browne, B.J.V. Wees, B.L. Feringa, Chem. Commun., 46, 7539-7541 (2010). https://doi.org/10.1039/c0cc02688c
  20. A. Schlierf, H. Yang, E. Gebremedhn, E. Treossi, L. Ortolani, L. Chen, A. Minoia, V. Morandi, P. Samori, C. Casiraghi, D. Beljonne, V. Palermo, Nanoscale, 5, 4205-4216 (2013). https://doi.org/10.1039/c3nr00258f
  21. J.M. Englert, J. Rohrl, C.D. Schmidt, R. Graupner, M. Hundhausen, F. Hauke, A. Hirsch, Adv. Mater., 21, 4265-4269 (2009). https://doi.org/10.1002/adma.200901578
  22. A.B. Bourlinos, V. Georgakilas, R. Zboril, T.A. Steriotis, A.K. Stubos, C. Trapalis, Solid State Commun., 149, 2172-2176 (2009). https://doi.org/10.1016/j.ssc.2009.09.018
  23. S. Perumal, H.M. Lee, I.W. Cheong, J. Colloid Interface Sci., 497, 359-367 (2017). https://doi.org/10.1016/j.jcis.2017.03.027
  24. S. Perumal, H.M. Lee, I.W. Cheong, Carbon, 107, 74-76 (2016). https://doi.org/10.1016/j.carbon.2016.05.049
  25. H.M. Lee, S. Perumal, I.W. Cheong, Polymers, 8, 101-112 (2016). https://doi.org/10.3390/polym8030101
  26. S. Perumal, K.T. Park, H.M. Lee, I.W. Cheong, J. Colloid Interface Sci., 464, 25-35 (2016). https://doi.org/10.1016/j.jcis.2015.11.014
  27. V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Chem. Rev., 116, 5464-5519 (2016). https://doi.org/10.1021/acs.chemrev.5b00620
  28. D.W. Johnson, B.P. Dobson, K.S. Coleman, Curr. Opin. Colloid Interface Sci., 20, 367-382 (2015). https://doi.org/10.1016/j.cocis.2015.11.004
  29. Q. Li, C. Gao, S. Li, F. Huo, W. Zhang, Polym. Chem., 5, 2961-2972 (2014). https://doi.org/10.1039/C3PY01699D
  30. A. Karali, G.E. Froudakis, P. Dais, F. Heatley, Macromolecules, 33, 3180-3183 (2000). https://doi.org/10.1021/ma9918912
  31. H. Shin, B.G. Min, W. Jeong, C. Park, Macromol. Rapid Commun., 26, 1451-1457 (2005). https://doi.org/10.1002/marc.200500290
  32. H.K. Cho, I.W. Cheong, J.M. Lee, J.H. Kim, Korean J. Chem. Eng., 27, 731-740 (2010). https://doi.org/10.1007/s11814-010-0216-5
  33. Y.-W. Jung, J.-W. Park, I. Kim, C.-S. Ha, J. Adhesion Interface, 6, 1-7 (2005).
  34. M. P. Stevens, Polymer Chemistry: an introduction, Oxford University press, revised 3rd Edn., (1999).
  35. Y. Yu, Z. Wu, L. He, B. Jiao, X. Hou, Thin Solid Films, 589, 852-856 (2015). https://doi.org/10.1016/j.tsf.2015.07.043
  36. S. O’Driscoll, G. Demirel, R.A. Farrell, T.G. Fitzgerald, C. O’Mahony, J.D. Holmes, M.A. Morris, Polym. Adv. Technol., 22, 915-923 (2011). https://doi.org/10.1002/pat.1596
  37. C.M. Hansen, Hansen solubility parameter: a user's handbook, CRC press, revised 2nd Edn., (2007).
  38. A.E.D. Rio-Castillo, C. Merino, E. Diez-Barra, E. Vazquez, Nano Res., 7, 963-972 (2014). https://doi.org/10.1007/s12274-014-0457-4

피인용 문헌

  1. Recent Studies on Dispersion of Graphene–Polymer Composites vol.13, pp.14, 2021, https://doi.org/10.3390/polym13142375