DOI QR코드

DOI QR Code

시료용액의 특성에 따른 고정화된 단일벽 탄소나노튜브의 전기적 거동

Electrical Property of Immobilized SWNTs Bundle as Bridge between Electrodes in Nanobiosensor Depending on Solvent Characteristics

  • 이진영 (상명대학교 식물식품공학과) ;
  • 조재훈 (한국생산기술연구원 그린공정소재그룹) ;
  • 박철환 (광운대학교 화학공학과)
  • Lee, Jinyoung (Department of Plant and Food Sciences, Sangmyung University) ;
  • Cho, Jaehoon (Green Process and Materials R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Park, Chulhwan (Department of Chemical Engineering, Kwangwoon University)
  • 투고 : 2016.07.01
  • 심사 : 2016.09.29
  • 발행 : 2017.02.01

초록

현재 세계적인 이슈가 되고 있는 나노과학과 기술은 탄소나노튜브(CNTs)를 기반으로 한 바이오센서 성능 향상에 주력하고 있다. 다양한 기능성을 가진 CNTs는 높은 안정성과 바이오 수용체와 같은 생체물질과의 높은 적합성으로 이를 이용한 바이오 전극 기술에 힘입어 의학, 식품 및 환경에서 이슈가 되는 물질들을 검출하기 위한 산업적 응용 연구가 주목받고 있다. 본 연구에서는 이러한 CNTs를 이용한 전기화학적 바이오센서에 있어서 시료가 액체 상태로 검출이 예상되는데 그 시료의 화학적 특성에 따른 금 전극 사이에 고정화된 CNTs의 전자전달현상을 조사하였다. 그 결과, 시료가 극성인 경우와 무극성인 경우 고정화된 CNTs의 전자전달 현상이 다르게 나타났으며, 극성의 세기가 증가할수록 전자의 이동에 방해를 받는 것으로 확인되었다. 이는 CNTs의 양끝에 존재하는 극성 작용기와의 상호작용에 의한 것으로서 센서 디바이스 전체를 시료 용액에 침투시켜 전자이동을 관찰한 결과와 달리 안정적으로 저항값을 나타내는 것으로 확인되었다. 향후 민감도가 높은 CNTs 기반 나노바이오센서 개발 시 시료의 효과적인 전처리 공정에서 이러한 용매의 극성을 고려한 최적화 연구가 필요하다.

In recent, it is worldwide issued that nanoscale science and technology as a solution have supported to increase the sensing performance in carbon nanotube based biosensor system. Containing material chemistry in various nanostructures has formed their high potentials for stabilizing and activating biocatalyst as a bioreceptor for medical, food contaminants, and environmental detections using electrode modification technologies. Especially, the large surface area provides the attachment of biocatalysts increasing the biocatalyst loading. Therefore, nano-scale engineering of the biocatalysts have been suggested to be the next stage advancement of biosensors. Here, we would like to study the electrical mechanism depending on the exposure methods (soaking or dropping) to the sample solution to the assembled carbon nanotubes (CNTs) on the gold electrodes of biosensor for a simple and highly sensitive detection. We performed various experiments using polar and non-polar solutions as sampling tests and identified electrical response of assembled CNTs in those solutions.

키워드

참고문헌

  1. Iijima, S., "Helical Microtubules of Graphitic Carbon," Nature, 354, 56-58(1991). https://doi.org/10.1038/354056a0
  2. Swamy, B. E. K. and Venton, B. J., "Carbon Nanotube-Modified Microelectrodes for Simultaneous Detection of Dopamine and Serotonin in Vivo," Analyst, 132, 876-884(2007). https://doi.org/10.1039/b705552h
  3. Lin, Y., Zhu, N., Yu, P., Su, L. and Mao, L., "Physiologically Relevant Online Electrochemical Method for Continuous and Simultaneous Monitoring of Striatum Glucose and Lactate Following Global Cerebral Ischemia/Reperfusion," Anal. Chem., 81, 2067-2074(2009). https://doi.org/10.1021/ac801946s
  4. Chung, Y. and Kwon, Y., "A Study on Performance Improvement of Glucose Sensor Adopting a Catalyst Using New Cross Liker," Korean Chem. Eng. Res., 53(6), 802-807(2015). https://doi.org/10.9713/kcer.2015.53.6.802
  5. Bardhan, N. M., Ghosh, D. and Belcher, A. M., "Carbon Nanotubes as in Vivo Bacterial Probes," Nat. Commun., 5, 4918(2014). https://doi.org/10.1038/ncomms5918
  6. Lee, J., Shin, H. Y., Kang, S. W., Park, C. and Kim, S. W., "Improvement of Electrical Properties via Glucose Oxidase-Immobilization by Actively Turning over Glucose for an Enzyme-Based Biofuel Cell Modified with DNA-Wrapped Single Walled Nanotubes," Biosens. Bioelectron., 26, 2685-2688(2011). https://doi.org/10.1016/j.bios.2010.07.020
  7. Kim, S., Park, S., Kwon, J. and Ha, K., "Preparation of Electrically Conductive Composites Filled with Nickel Powder and MWCNT Fillers," Korean Chem. Eng. Res., 54(3), 410-418(2016). https://doi.org/10.9713/kcer.2016.54.3.410
  8. Gultepe, E., Nagesha, D., Casse, B. D. F., Selvarasah, S., Busnaina, A. and Sridhar, S., "Large Scale 3D Vertical Assembly of Single-Wall Carbon Nanotubes at Ambient Temperatures," Nanotechnology, 19(45), 455309(2008). https://doi.org/10.1088/0957-4484/19/45/455309
  9. Mureau, N., Mendoza, E., Silva, S. R. P., Hoettges, K. F. and Hughes, M. P., "In Situ and Real Time Determination of Metallic and Semiconducting Single-Walled Carbon Nanotubes in Suspension via Dielectrophoresis," Appl. Phys. Lett., 88, 243109(2006). https://doi.org/10.1063/1.2207501
  10. Monica, A. H., Papadakis, S. J. R., Osiander and Paranjape, M., "Wafer-Level Assembly of Carbon Nanotube Networks Using Dielectrophoresis," Nanotechnology, 19(8), 085303(2008). https://doi.org/10.1088/0957-4484/19/8/085303
  11. Stokes, P. and Khondaker, S. I., "Local-Gated Single-Walled Carbon Nanotube Field Effect Transistors Assembled by AC Dielectrophoresis," Nanotechnology, 19(17), 175202(2008). https://doi.org/10.1088/0957-4484/19/17/175202
  12. Xiao, Z. and Camino, F. E., "The Fabrication of Carbon Nanotube Field-Effect Transistors with Semiconductors as the Source and Drain Contact Materials," Nanotechnology, 20(13), 135205(2009). https://doi.org/10.1088/0957-4484/20/13/135205
  13. Yuen, F. L.-Y., Zak, G., Waldman, S. D. and Docoslis, A., "Morphology of Fibroblasts Grown on Substrates Formed by Dielectrophoretically Aligned Carbon Nanotubes," Cytotechnology, 56, 9-17(2008). https://doi.org/10.1007/s10616-007-9113-0
  14. Zhou, R., Wang, P. and Chang, H.-C., "Bacteria Capture, Concentration and Detection by Alternating Current Dielectrophoresis and Self-Assembly of Dispersed Single-Wall Carbon Nanotubes," Electrophoresis, 27, 1376-1385(2006). https://doi.org/10.1002/elps.200500329
  15. Lim, J.-H., Phiboolsirichit, N., Mubeen, S., Deshusses, M. A., Mulchandani, A. and Myung, N. V., "Electrical and Gas Sensing Properties of Polyaniline Functionalized Single-Walled Carbon Nanotubes," Nanotechnology, 21, 1-7(2010).
  16. Bartolomeo, A. D., Rinzan, M., Boyd, A. K., Yang, Y., Guadagno, L., Giubileo, F. and Barbara, P., "Electrical Properties and Memory Effects of Field-Effect Transistors from Networks of Singleand Double-Walled Carbon Nanotubes," Nanotechnology, 21(11), 115204(2010). https://doi.org/10.1088/0957-4484/21/11/115204
  17. Wong, S. S., Woolley, A. T., Joselevich, E., Cheung, C. L. and Lieber, C. M., "Covalently-Functionalized Single-Walled Carbon Nanotube Probe Tips for Chemical Force Microscopy," J. Am. Chem. Soc., 120, 8557-8558(1998). https://doi.org/10.1021/ja9817803
  18. Li, S. H., Li, H., Wang, X., Song, Y., Liu, Y., Jiang, L. and Zhu, D., "Super-hydrophobicity of Large-area Honeycomb-like Aligned Carbon Nanotubes," J. Phys. Chem. B, 106, 9274-9276(2002). https://doi.org/10.1021/jp0209401
  19. Wang, H. L., Miyauchi, M. and Takata, T., "Initial Attachment of Osteoblasts to Various Guided Bone Regeneration Membranes. An in Vitro study," J. Periodontal. Res., 37, 340-344(2002). https://doi.org/10.1034/j.1600-0765.2002.01625.x
  20. Kalka, C., Masuda, H., Takahashi, T., Wiltrud, M., Kalka, M., Marcy, S., Marianne, K., Tong, L., Jeffrey, M. I. and Takayuki, A., "Transplantation of ex Vivo Expanded Endothelial Progenitor Cells for Therapeutic Neovascularization," Proc. Natl. Acad. Sci. USA., 97, 3422-3427(2000). https://doi.org/10.1073/pnas.97.7.3422
  21. Moldenhauer, A., Nociari, M. M., Dias, S., Lalezari. P. and Moore, M. A., "Optimized Culture Conditions for the Generation of Dendritic Cells from Peripheral Blood Monocytes," Vox Sang, 84, 228-236(2003). https://doi.org/10.1046/j.1423-0410.2003.00283.x
  22. Pollreisz, A., Assinger, A., Hacker, S., Hoetzenecker, K., Schmid, W., Lang, G., Wolfsberger, M., Steinlechner, B., Bielek, E., Lalla, E., Klepetko, W., Volf, I. and Ankersmit, H. J., "Intravenous Immunoglobulins Induce CD32-Mediated Platelet Aggregation in Vitro," Br J. Dermatol. 159, 578-584(2008). https://doi.org/10.1111/j.1365-2133.2008.08700.x
  23. Jing, R., Wang, H., Jiang, S. and Zhang, Z., "Up-Regulation of the Receptor for Advanced Glycation End Product (RAGE) in Esophageal Cancer and Down-Regulation in Lung Cancer and their Relationship to Clinicopathological Features," Lab. Med., 39, 661-667(2008). https://doi.org/10.1309/LM7ZIM11PAFYMUUY