References
- Adams, R.A. (1975), Sobolev Spaces, Academic Press, New York.
- Chirita, S, Ciarletta, M. and D'Apice, C. (2013), "On a theory of thermoelasticity with microtem-peratures", J. Math. Anal. Appl., 397, 349-361. https://doi.org/10.1016/j.jmaa.2012.07.061
- Chirita, S. and Ghiba, I.D. (2012), "Rayleigh waves in Cosserat elastic materials", Int. J. Eng. Sci., 51, 117-127. https://doi.org/10.1016/j.ijengsci.2011.10.011
- Dyszlewicz, J. (2004), "Micropolar Theory of Elasticity", Lect. Notes Appl. Com-put. Mech., Vol. 15, Springer, Berlin/Heidelberg/New York.
- Eringen, A.C. (1966), "Linear theory of micropolar elasticity", J. Math. Mech., 15, 909-924.
- Eringen, A.C. (1999), Microcontinuum Field Theories I: Foundations and Solids, Springer-Verlag, New York/Berlin/ Heidelber.
- Grot, R.A. (1969), "Thermodynamics of a continuum with microstructure, Int. J. Eng. Sci., 7, 801-814. https://doi.org/10.1016/0020-7225(69)90062-7
- Iesan, D. (2004), Thermoelastic Models of Continua, Kluwer Academic Publishers, Dordrecht.
- Iesan, D. and Nappa, L. (2005), "On the theory of heat for micromorphic bodies", Int. J. Eng. Sci., 43, 17-32. https://doi.org/10.1016/j.ijengsci.2004.09.003
- Iesan, D. and Quintanilla, R. (2000), "On a theory of thermoelasticity with mi-crotemperatures", J. Therm. Stress., 23, 199-215. https://doi.org/10.1080/014957300280407
- Kim, D.K., Yu, S.Y. and Choi, H.S. (2013), "Condition assessment of raking dam-aged bulk carriers under vertical bending moments", Struct. Eng. Mech., 46(5), 629-644. https://doi.org/10.12989/sem.2013.46.5.629
- Marin, M, (1996), "Some basic theorems in elastostatics of micropolar materials with voids", J. Comput. Appl. Math., 70(1), 115-126. https://doi.org/10.1016/0377-0427(95)00137-9
- Marin, M, Abbas, I. and Kumar, R. (2014), "Relaxed Saint-Venant principle for thermoelastic micropolar di usion", Struct. Eng. Mech., 51(4), 651-662. https://doi.org/10.12989/sem.2014.51.4.651
- Marin, M. (1995), "On existence and uniqueness in thermoelasticity of micropolar bodies", Comptes Rendus, Acad. Sci. Paris, Serie II, 321(12), 475-480.
- Marin, M. (2010), "A domain of in uence theorem for microstretch elastic materials", Nonlin. Anal. R.W.A., 11(5), 3446-3452. https://doi.org/10.1016/j.nonrwa.2009.12.005
- Marin, M. and Marinescu, C. (1998), "Thermo-elasticity of initially stressed bodies. Asymptotic equipartition of energies", Int. J. Eng. Sci., 36 (1), 73-86. https://doi.org/10.1016/S0020-7225(97)00019-0
- Othman, M.I., Tantawi, R.S. and Abd-Elaziz, E.M. (2016), "Effect of initial stress on a porous thermoelastic medium with microtemperatures", J. Porous Media, 19(2), 155-172. https://doi.org/10.1615/JPorMedia.v19.i2.40
- Othman, M.I., Tantawi, R.S. and Hilal, M.I. (2016), "Hall current and gravity effect on magneto-micropolar thermoelastic medium with microtempe-ratures", J. Therm. Stress., 39(7), 751-771. https://doi.org/10.1080/01495739.2016.1188635
- Othman, M.I., Tantawi, R.S. and Hilal, M.I. (2016), "Rotation and modified Ohm's law influence on magneto-thermoelastic micropolar material with microtemperatures", Appl. Math. Comput., 276(5), 468-480
- Pazy, A. (1983), Semigroups of Operators of Linear Operators and Applications, Springer, New York, Berlin.
- Scalia, A. and Svanadze, M. (2009), "Potential method in the linear theory of thermoelasticity with microtemperatures", J. Therm. Stress., 32, 1024-1042. https://doi.org/10.1080/01495730903103069
- Sharma, K. and Marin, M. (2014), "Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids", An. Sti. Univ. Ovidius Constanta, 22(2), 151-175.
- Straughan, B. (2011), Heat Waves, Applied Mathematical Sciences, Springer, New York.
- Takabatake, H. (2012), "Effects of dead loads on the static analysis of plates", Struct. Eng. Mech., 42(6), 761-781. https://doi.org/10.12989/sem.2012.42.6.761
Cited by
- A mathematical model for three-phase-lag dipolar thermoelastic bodies vol.2017, pp.1, 2017, https://doi.org/10.1186/s13660-017-1380-5
- A dipolar structure in the heat-flux dependent thermoelasticity vol.8, pp.3, 2018, https://doi.org/10.1063/1.5029259
- Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system pp.1432-0959, 2019, https://doi.org/10.1007/s00161-018-0722-y
- Improved rigidity of composite circular plates through radial ribs pp.2041-3076, 2018, https://doi.org/10.1177/1464420718768049
- Hysteretically Symmetrical Evolution of Elastomers-Based Vibration Isolators within α-Fractional Nonlinear Computational Dynamics vol.11, pp.7, 2017, https://doi.org/10.3390/sym11070924
- Symmetry in Applied Continuous Mechanics vol.11, pp.10, 2017, https://doi.org/10.3390/sym11101286
- A Fractional-Order Predator-Prey Model with Ratio-Dependent Functional Response and Linear Harvesting vol.7, pp.11, 2017, https://doi.org/10.3390/math7111100
- Oscillation of Second Order Neutral Type Emden-Fowler Delay Difference Equations vol.5, pp.6, 2019, https://doi.org/10.1007/s40819-019-0751-7
- Nonlinear pre and post-buckled analysis of curved beams using differential quadrature element method vol.14, pp.1, 2017, https://doi.org/10.1186/s40712-019-0114-5
- Reinterpretation of Multi-Stage Methods for Stiff Systems: A Comprehensive Review on Current Perspectives and Recommendations vol.7, pp.12, 2017, https://doi.org/10.3390/math7121158
- Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory vol.8, pp.6, 2017, https://doi.org/10.12989/csm.2019.8.6.501
- Finite element analysis of an elbow tube in concrete anchor used in water supply networks vol.234, pp.1, 2017, https://doi.org/10.1177/1464420719871690
- Thermomechanical interactions in transversely isotropic magneto-thermoelastic medium with fractional order generalized heat transfer and hall current vol.27, pp.1, 2020, https://doi.org/10.1080/25765299.2019.1703494
- Deformation in transversely isotropic thermoelastic thin circular plate due to multi-dual-phase-lag heat transfer and time-harmonic sources vol.27, pp.1, 2020, https://doi.org/10.1080/25765299.2020.1781328
- Effects of nonlocality and two temperature in a nonlocal thermoelastic solid due to ramp type heat source vol.27, pp.1, 2020, https://doi.org/10.1080/25765299.2020.1825157
- Bioconvection in the Rheology of Magnetized Couple Stress Nanofluid Featuring Activation Energy and Wu’s Slip vol.45, pp.1, 2020, https://doi.org/10.1515/jnet-2019-0049
- Bioconvection in the Rheology of Magnetized Couple Stress Nanofluid Featuring Activation Energy and Wu’s Slip vol.45, pp.1, 2020, https://doi.org/10.1515/jnet-2019-0049
- Stability Results for Implicit Fractional Pantograph Differential Equations via ϕ-Hilfer Fractional Derivative with a Nonlocal Riemann-Liouville Fractional Integral Condition vol.8, pp.1, 2020, https://doi.org/10.3390/math8010094
- Some Backward in Time Results for Thermoelastic Dipolar Structures vol.8, pp.None, 2017, https://doi.org/10.3389/fphy.2020.00041
- Vibration analysis of FG porous rectangular plates reinforced by graphene platelets vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.215
- Effect of thermal conductivity on isotropic modified couple stress thermoelastic medium with two temperatures vol.34, pp.2, 2017, https://doi.org/10.12989/scs.2020.34.2.309
- A Study of Deformations in a Thermoelastic Dipolar Body with Voids vol.12, pp.2, 2017, https://doi.org/10.3390/sym12020267
- Criteria of Existence for a q Fractional p-Laplacian Boundary Value Problem vol.6, pp.None, 2020, https://doi.org/10.3389/fams.2020.00007
- Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating vol.73, pp.6, 2017, https://doi.org/10.12989/sem.2020.73.6.621
- Time harmonic interactions in an orthotropic media in the context of fractional order theory of thermoelasticity vol.73, pp.6, 2017, https://doi.org/10.12989/sem.2020.73.6.725
- Radar seeker performance evaluation based on information fusion method vol.2, pp.4, 2017, https://doi.org/10.1007/s42452-020-2510-0
- Numerical solution of Korteweg-de Vries-Burgers equation by the modified variational iteration algorithm-II arising in shallow water waves vol.95, pp.4, 2017, https://doi.org/10.1088/1402-4896/ab6070
- Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate vol.35, pp.1, 2017, https://doi.org/10.12989/scs.2020.35.1.111
- Vibrational characteristic of FG porous conical shells using Donnell's shell theory vol.35, pp.2, 2017, https://doi.org/10.12989/scs.2020.35.2.249
- Time harmonic interactions in non local thermoelastic solid with two temperatures vol.74, pp.3, 2017, https://doi.org/10.12989/sem.2020.74.3.341
- The effect of gravity and hydrostatic initial stress with variable thermal conductivity on a magneto-fiber-reinforced vol.74, pp.3, 2017, https://doi.org/10.12989/sem.2020.74.3.425
- Analysis of thermal responses in a two-dimensional porous medium caused by pulse heat flux vol.41, pp.6, 2017, https://doi.org/10.1007/s10483-020-2612-8
- Effect of two-temperature on the energy ratio at the boundary surface of inviscid fluid and piezothermoelastic medium vol.18, pp.6, 2017, https://doi.org/10.12989/eas.2020.18.6.743
- On a free boundary value problem for the anisotropic N-Laplace operator on an N−dimensional ring domain vol.28, pp.2, 2020, https://doi.org/10.2478/auom-2020-0027
- Thermomechanical response in a two-dimension porous medium subjected to thermal loading vol.30, pp.8, 2020, https://doi.org/10.1108/hff-11-2019-0803
- Influence of Geometric Equations in Mixed Problem of Porous Micromorphic Bodies with Microtemperature vol.8, pp.8, 2020, https://doi.org/10.3390/math8081386
- Memory response in elasto-thermoelectric spherical cavity vol.9, pp.4, 2020, https://doi.org/10.12989/csm.2020.9.4.325
- Reflection of coupled dilatational and shear waves in the generalized micropolar thermoelastic materials vol.26, pp.21, 2017, https://doi.org/10.1177/1077546320908705
- Generalized thermoelastic interaction in a two-dimensional porous medium under dual phase lag model vol.30, pp.11, 2017, https://doi.org/10.1108/hff-12-2019-0917
- Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux vol.23, pp.3, 2017, https://doi.org/10.12989/gae.2020.23.3.217
- Three-phase lag model of thermo-elastic interaction in a 2D porous material due to pulse heat flux vol.30, pp.12, 2017, https://doi.org/10.1108/hff-03-2020-0122
- Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent vol.38, pp.4, 2021, https://doi.org/10.12989/scs.2021.38.4.355
- Composite Structures with Symmetry vol.13, pp.5, 2021, https://doi.org/10.3390/sym13050792