DOI QR코드

DOI QR Code

On the mixed-mode crack propagation in FGMs plates: comparison of different criteria

  • Nabil, Benamara (Laboratory of Materials and Reactive Systems, Mechanical Engineering Department, Djillali Liabes University of Sidi Bel-Abbes) ;
  • Abdelkader, Boulenouar (Laboratory of Materials and Reactive Systems, Mechanical Engineering Department, Djillali Liabes University of Sidi Bel-Abbes) ;
  • Miloud, Aminallah (Laboratory of Materials and Reactive Systems, Mechanical Engineering Department, Djillali Liabes University of Sidi Bel-Abbes) ;
  • Noureddine, Benseddiq (Mechanics Laboratory of Lille)
  • 투고 : 2015.09.28
  • 심사 : 2016.12.13
  • 발행 : 2017.02.10

초록

Modelling of a crack propagating through a finite element mesh under mixed mode conditions is of prime importance in fracture mechanics. In this paper, two crack growth criteria and the respective crack paths prediction in functionally graded materials (FGM) are compared. The maximum tangential stress criterion (${\sigma}_{\theta}-criterion$) and the minimum strain energy density criterion (S-criterion) are investigated using advanced finite element technique. Using Ansys Parametric Design Language (APDL), the variation continues in the material properties are incorporated into the model by specifying the material parameters at the centroid of each finite element. In this paper, the displacement extrapolation technique (DET) proposed for homogeneous materials is modified and investigated, to obtain the stress intensity factors (SIFs) at crack-tip in FGMs. Several examples are modeled to evaluate the accuracy and effectiveness of the combined procedure. The effect of the defects on the crack propagation in FGMs was highlighted.

키워드

참고문헌

  1. ANSYS, Inc. (2009), Programmer's Manual for Mechnical APDL, Release 12.1.
  2. Barsoum, R.S. (1974), "On the use of isoparametric finite element in linear fracture mechanics", Int. J. Numer. Meth. Eng., 10, 25-37.
  3. Becker, T.L. Jr., Cannon, R.M. and Ritchie, R.O. (2001), "Finite crack kinking and T-stresses in functionally graded materials", Int. J. Solid. Struct., 38(32-33), 5545-5563. https://doi.org/10.1016/S0020-7683(00)00379-6
  4. Benamara, N., Boulenouar, A. and Aminallah, M. (2017), "Strain energy density prediction of mixed-mode crack propagation in functionally graded materials", Period. Polytech. Mech. Eng. (in press)
  5. Benouis, A., Boulenouar, A., Benseddiq, N. and Serier, B. (2015), "Numerical analysis of crack propagation in cement PMMA, Application of SED approach", Struct. Eng. Mech., 55 (1), 93-109. https://doi.org/10.12989/sem.2015.55.1.093
  6. Bouchard, P.O., Bay, F. and Chastel, Y. (2003), "Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria", Comput. Meth. Appl. Mech. Eng., 192, 3887-3908. https://doi.org/10.1016/S0045-7825(03)00391-8
  7. Bouchard, P.O., Bay, F., Chastel, Y. and Tovena, I. (2000), "A modified J-integral for functionally graded materials crack propagation modelling using an advanced remeshing", Comput. Meth. Appl. Mech. Eng., 189, 723-742. https://doi.org/10.1016/S0045-7825(99)00324-2
  8. Boulenouar, A., Benouis, A. and Benseddiq, N. (2016), "Numerical modelling of crack propagation in cement PMMA: comparison of different criteria", Mater. Res., 19(4), 846-855. https://doi.org/10.1590/1980-5373-MR-2015-0784
  9. Boulenouar, A., Benseddiq, N. and Mazari, M. (2013a), "Strain energy density prediction of crack propagation for 2D linear elastic materials", Theor. Appl. Frac. Mech., (67-68) 29-37.
  10. Boulenouar, A., Benseddiq, N. and Mazari, M. (2013b), "Twodimensional numerical estimation of stress intensity factors and crack propagation in linear elastic analysis", Eng. Technol. Appl. 5, 506-510.
  11. Boulenouar, A., Benseddiq, N., Mazari, M. and Benamara, N. (2014), "FE model for linear-elastic mixed mode loading: Estimation of sifs and crack propagation", J. Theor. Appl. Mech., 52 (2), 373-383.
  12. Burlayenko, V.N., Altenbach, H., Sadowski, T. and Dimitrova, S.D. (2016), "Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate", Comput. Mater. Sci., 116, 11-21. https://doi.org/10.1016/j.commatsci.2015.08.038
  13. Chen, J., Wu, L. and Du, S. (2000), "A modified J-integral for functionally graded materials", Mech. Struct. Mach., 54, 301-306.
  14. Cotterell, B. and Rice, J.R. (1980), "Slightly curved or kinked cracks", Int. J. Fract., 16(2), 155-169. https://doi.org/10.1007/BF00012619
  15. Dag, S. (2006), "Thermal fracture analysis of orthotropic functionally graded materials using an equivalent domain integral approach", Eng. Fract. Mech., 73, 2802-2828. https://doi.org/10.1016/j.engfracmech.2006.04.015
  16. Dag, S., Arman, E.E. and Yildirim, B. (2010), "Computation of thermal fracture parameters for orthotropic functionally graded materials using Jk-integral", Int. J. Solid. Struct., 47, 3480-3488. https://doi.org/10.1016/j.ijsolstr.2010.08.023
  17. EL-Desouky, A.R. and EL-Wazery, M.S. (2013), "Mixed mode crack propagation of Zirconia/Nickel functionally graded materials", Int. J. Eng., 26(8), 885-894.
  18. Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Basic Eng., 85, 519-27. https://doi.org/10.1115/1.3656897
  19. Erdogan, F. and Wu, B.H. (1997), "The surface crack problem for a plate with functionally graded properties", ASME J. Appl. Mech., 449-456.
  20. Gu, P. and Asaro, R.J. (1997), "Crack deflection in functionally graded materials", Int. J. Solid. Struct., 34(24), 3085-3098. https://doi.org/10.1016/S0020-7683(96)00175-8
  21. Hosseini, S.S., Bayesteh, H. and Mohammadi, S. (2013), "Thermo-mechanical XFEM crack propagation analysis of functionally graded materials", Mater. Sci. Eng.-A, 561, 285-302. https://doi.org/10.1016/j.msea.2012.10.043
  22. Hussain, M.A., Pu, S.L. and Underwood, J. (1993), "Strain energy release rate for a crack under combined mode I and mode II", Eds. Paris, P.C. and Irwin, G.R., Fracture Analysis, ASTM STP 560, Philadelphia.
  23. Kidane, A., Chalivendra, V.B., Shukla, A. and Chona, R. (2010), "Mixed mode dynamic crack propagation in graded material under thermomechanical loading", Eng. Fract. Mech., 77, 2864-2880. https://doi.org/10.1016/j.engfracmech.2010.07.004
  24. Kim, J.H. (2003), "Mixed-mode crack propagation in functionally graded materials", Ph.D. Thesis, University of Illinois at Urbana-Champaign, Illinois.
  25. Kim, J.H. and Paulino, G.H. (2002), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Meth. Eng., 53, 1903-1935. https://doi.org/10.1002/nme.364
  26. Kim, J.H. and Paulino, G.H. (2003 b), "The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors", Int. J. Solid. Struct., 40, 3967-4001. https://doi.org/10.1016/S0020-7683(03)00176-8
  27. Kim, J.H. and Paulino, G.H. (2003a), "Mixed-mode J-integral formulation and implementation using graded finite elements for fracture analysis of non-homogeneous orthotropic materials", Mech. Mater., 35, 107-128. https://doi.org/10.1016/S0167-6636(02)00159-X
  28. Kim, J.H. and Paulino, G.H. (2004), "Simulation of crack propagation in functionally graded materials under mixed-mode and non-proportional loading", Int. J. Mech. Mater. Des., 1(1), 63-94. https://doi.org/10.1023/B:MAMD.0000035457.78797.c5
  29. Kim, J.H. and Paulino, G.H. (2005), "Mixed-mode crack propagation in functionally graded materials", Mater. Sci., Trans Tech Publ., 492, 409-414.
  30. Kim, J.H. and Paulino, G.H. (2007), "On fracture criteria for mixed-mode crack propagation in functionally graded materials", Mech. Adv. Mater. Struct., 14, 227-244. https://doi.org/10.1080/15376490600790221
  31. Lee, Y.D. and Erdogan, F. (1994), "Residual/thermal stresses in FGM and laminated thermal barrier coatings", Int. J. Fract., 69(2), 145-165. https://doi.org/10.1007/BF00035027
  32. Ma, L., Wang, Z.Y. and Wu, L.Z. (2010), "Numerical simulation of mixed-mode crack propagation in functionally graded materials", Mater. Sci., 631-632, 121-126.
  33. Palaniswamy, K. and Knauss, W.G. (1978), "On the problem of crack extension in brittle solids under general loading", Ed. Nemat-Nasser, S., Mechanics Today, Vol. 4, Pergramon Press.
  34. Raju, I.S. and Newman, J.C. (1979), "Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates", Eng. Fract. Mech., 11(4), 817-829. https://doi.org/10.1016/0013-7944(79)90139-5
  35. Rashid, M.M. (1988), "The arbitrary local mesh replacement method: An alternative to remeshing for crack propagation analysis", Comput. Meth. Appl. Mech. Eng., 154, 133-150.
  36. Rybicki, E.F. and Kanninen, M.F. (1977), "A finite element calculation of stress intensity factors by a modified crack closure integral", Eng. Fract. Mech., 9, 931-938. https://doi.org/10.1016/0013-7944(77)90013-3
  37. Sabuncuoglu, B., Dag, S. and Yildirim, B. (2012), "Three dimensional computational analysis of fatigue crack propagation in functionally graded materials", Comput. Mater. Sci., 52, 246-252. https://doi.org/10.1016/j.commatsci.2011.06.010
  38. Shih, C.F., DeLorenzi, H.G. and German, M.D. (1967), "Crack extension modeling with singular quadratic isoparametric elements", Int. J. Fract., 12, 647-651.
  39. Sih, G.C. (1973), Mechanics of Fracture 1: a Special Theory of Crack Propagation, Noordhoff International Publishing, Leyden.
  40. Sih, G.C. (1974), "Strain energy-density factor applied to mixed mode crack problem", Int. J. Fract., 10(3), 305-321. https://doi.org/10.1007/BF00035493
  41. Sih, G.C. (1975), Three dimensional crack problems, Mechanics of fracture, V. 2, Noordhoff, Netherlands.
  42. Topal, S. and Dag, S. (2013), "Hygrothermal fracture analysis of orthotropic functionally graded materials using JK-Integralbased bethods", Math. Probl. Eng., Article ID 315176, 11.

피인용 문헌

  1. Numerical analysis of the behaviour of repaired surface cracks with bonded composite patch vol.25, pp.2, 2017, https://doi.org/10.12989/scs.2017.25.2.209
  2. Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM vol.66, pp.1, 2017, https://doi.org/10.12989/sem.2018.66.1.097
  3. A Numerical Modelling of Mixed Mode Crack Initiation and Growth in Functionally Graded Materials vol.22, pp.3, 2017, https://doi.org/10.1590/1980-5373-mr-2018-0701
  4. Simulation of the tensile behaviour of layered anisotropy rocks consisting internal notch vol.69, pp.1, 2017, https://doi.org/10.12989/sem.2019.69.1.051
  5. Computation of SIFs for cracked FGMs under mechanical and thermal loadings vol.40, pp.1, 2017, https://doi.org/10.2478/amtm-2020-0003
  6. Peridynamic analysis of dynamic fracture behaviors in FGMs with different gradient directions vol.75, pp.3, 2017, https://doi.org/10.12989/sem.2020.75.3.339
  7. Numerical simulation on the crack initiation and propagation of coal with combined defects vol.79, pp.2, 2017, https://doi.org/10.12989/sem.2021.79.2.237
  8. A peridynamic approach for modeling of two dimensional functionally graded plates vol.279, pp.None, 2017, https://doi.org/10.1016/j.compstruct.2021.114743