DOI QR코드

DOI QR Code

Chaotic particle swarm optimization in optimal active control of shear buildings

  • Received : 2015.11.25
  • Accepted : 2016.11.03
  • Published : 2017.02.10

Abstract

The applications of active control is being more popular nowadays. Several control algorithms have been developed to determine optimum control force. In this paper, a Chaotic Particle Swarm Optimization (CPSO) technique, based on Logistic map, is used to compute the optimum control force of active tendon system. A chaotic exploration is used to search the solution space for optimum control force. The response control of Multi-Degree of Freedom (MDOF) shear buildings, equipped with active tendons, is introduced as an optimization problem, based on Instantaneous Optimal Active Control algorithm. Three MDOFs are simulated in this paper. Two examples out of three, which have been previously controlled using Lattice type Probabilistic Neural Network (LPNN) and Block Pulse Functions (BPFs), are taken from prior works in order to compare the efficiency of the current method. In the present study, a maximum allowable value of control force is added to the original problem. Later, a twenty-story shear building, as the third and more realistic example, is considered and controlled. Besides, the required Central Processing Unit (CPU) time of CPSO control algorithm is investigated. Although the CPU time of LPNN and BPFs methods of prior works is not available, the results show that a full state measurement is necessary, especially when there are more than three control devices. The results show that CPSO algorithm has a good performance, especially in the presence of the cut-off limit of tendon force; therefore, can widely be used in the field of optimum active control of actual buildings.

Keywords

References

  1. Altinoz, O.T., Yilmaz, A.E. and Weber, G.W. (2010), "Chaos Particle Swarm Optimized PID Controller for the Inverted Pendulum System", 2nd International Conference on Engineering Optimization, Lisbon.
  2. Block, J. and Gilliatt, H. (1997), "Active control of an aeroelastic structure", AIAA Meeting Papers on Disc, 1-11.
  3. Cheng, Y.M., Li, L., Chi, S. and Wei, W.B. (2007), "Particle swarm optimization algorithm for the location of the critical non-circular failure surface in two-dimensional slope stability analysis", Comput. Geotech., 34, 92-103. https://doi.org/10.1016/j.compgeo.2006.10.012
  4. Cho, H.C., Fadali, M.S., Saiidi, M.S. and Lee, K.S. (2005), "Neural network active control of structures", Int. J. Control, Autom. Syst., 3(2), 202-210.
  5. Chuang, L.Y., Tsai, S.W. and Yang, C.H. (2011), "Chaotic catfish particle swarm optimization for solving global numerical optimization problems", Appl. Math. Comput., 217(16), 6900-6916. https://doi.org/10.1016/j.amc.2011.01.081
  6. Chuanwen, J. and Bompard, E. (2005), "A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment", Energy Conversion and Management, 46, 2689-2696. https://doi.org/10.1016/j.enconman.2005.01.002
  7. de Oliveira, L.P.R., Janssens, K., Gajdatsy, P., Van der Auweraer, H., Varoto, P. S., Sas, P. and Desmet, W. (2009), "Active sound quality control of engine induced cavity noise", Mech. Syst. Signal Pr., 23, 476-488. https://doi.org/10.1016/j.ymssp.2008.04.005
  8. Dyke, S., Spencer, B., Jr., Quast, P., Sain, M., Kaspari, D. Jr. and Soong, T. (1996), "Acceleration feedback control of MDOF structures", J. Eng. Mech., ASCE, 122(9), 907-918. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:9(907)
  9. Francois, M., Defourm, D. and Negre, C. (2014), "A fast chaosbased Pseudo-Random bit generator using binary64 floatingpoint arithmetic", Informatica, 38, 115-124.
  10. Ghaffarzadeh, H. and Younespour, A. (2014), "Active tendons control of structures using block pulse functions", Struct. Control Hlth. Monit., 21(12), 1453-1464. https://doi.org/10.1002/stc.1656
  11. Ghanbarpor, Y.R. and Mohebbi, M. (2006), "Distributed genetic algorithms based control method for reducing structural responses under seismic exitation", International Conference on Computing and Decision Making in Civil and Building Engineering, Montreal.
  12. Hu, X. and Eberhart, R.C. (2002) "Adaptive particle swarm optimization: detection and response to dynamic systems", IEEE, 2, 1666-1670.
  13. Jabbari, F., Schmitendorf, W.E. and Yang, J.N. (1995), "H${\infty}$ control for seismic-excited buildings with acceleration feedback", J. Eng. Mech., ASCE, 121(9), 994-1002. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:9(994)
  14. Kalman, R.E. (1960), "A new approach to linear filtering and prediction problems", J. Basic Eng.-T., ASME, 82(1), 35-45. https://doi.org/10.1115/1.3662552
  15. Kennedy, J. and Eberhart, R.C. (1995), "Particle swarm optimization", IEEE Neural Networks Council, Proceedings of IEEE International Conference on Neural Networks, 1, 1942-1948.
  16. Kerboua, M., Benguediab, M., Megnounif, A., Benrahou, K.H. and Kaoulala, F. (2014), "Semi active control of civil structures, analytical and numerical studies", Phys. Procedia, 55, 301-306. https://doi.org/10.1016/j.phpro.2014.07.044
  17. Kim, D.H., Kim, D., Chang, S. and Jung, H. (2008), "Active control strategy of structures based on lattice type probabilistic neural network", Probab. Eng. Mech., 23, 45-50. https://doi.org/10.1016/j.probengmech.2007.10.004
  18. Kim, Y.J. and Ghaboussi, J. (2007), "A new genetic algorithm based control method using state space reconstruction", Proc. Second World Conf. Struct. Control, Kyoto, Japan.
  19. Kobori, T. and Minai, R. (1960), "Analytical study on active seismic response control", Arch. Inst. JPN, 66, 257-260.
  20. Kuo, D. (2005), "Chaos and its computing paradigm", IEEE Poten. Mag., 24(2), 13-15.
  21. Lei, Y., Hua, W., Luo, S. and He, M. (2015), "Detection and parametric identification of structural nonlinear restoring forces from partial measurements of structural responses", Struct. Eng. Mech., 54(2), 291-304. https://doi.org/10.12989/sem.2015.54.2.291
  22. Li, Q.S., Liu, D.K., Leung, A.Y.T., Zhang, N. and Luo, Q.Z. (2002), "A multilevel genetic algorithm for the optimum design of structural control systems", Int. J. Numer. Meth. Eng., 55(7), 817-834. https://doi.org/10.1002/nme.522
  23. Liu, B., Wang, L., Jin, Y.H., Tang, F. and Huang, D.X. (2005), "Improved particle swarm optimization combined with chaos", Chaos Solit. Fract., 25, 1261-1271. https://doi.org/10.1016/j.chaos.2004.11.095
  24. Maurice, C. (2006), Particle Swarm Optimization, Chippenham, Antony Rowe Ltd.
  25. Fisco, N.R. and Adeli, H. (2011), "Smart structures: Part I-active and semi-active control", Scientia Iranica, 18(3), 275-284. https://doi.org/10.1016/j.scient.2011.05.034
  26. Shayeghi, A., Shayeghi, H. and Kalasar, H.E. (2009), "Application of PSO technique for seismic control of tall building", Int. J. Intel. Syst. Technol., 3(4), 1116-1123.
  27. Shayeghi, H., Jalili, A. and Shayanfar, H.A. (2008), "Multi-stage fuzzy load frequency control using PSO", Energy Convers. Manage., 49, 2570-2580. https://doi.org/10.1016/j.enconman.2008.05.015
  28. Shi, Y. and Eberhart, R. (1998), "A modified particle swarm optimizer", 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, IEEE.
  29. Stojanovski, T. and Kocarev, L. (2001), "Chaos-based random number generators-Part I: analysis", IEEE Tran. Circuit. Syst.-I: Fundam. Theo. Appl., 48(3), 281-288 https://doi.org/10.1109/81.915385
  30. Tani, A., Kawamura, H. and Ryu, S. (1998), "Intelligent fuzzy optimal control of building structures", Eng. Struct., 20(3), 184-192. https://doi.org/10.1016/S0141-0296(97)00077-1
  31. Wu, B. and Bodson, M. (2004), "Multi-channel active noise control for periodic sources-indirect approach", Automatica, 40(2), 203-212. https://doi.org/10.1016/j.automatica.2003.09.014
  32. Yang, C.H., Tsai, S.W., Chuang, L.Y. and Yang, C.H. (2012), "An improved particle swarm optimization with double-bottom chaotic maps for numerical optimization", Appl. Math. Comput., 219(1), 260-279. https://doi.org/10.1016/j.amc.2012.06.015
  33. Yang, J.N., Akbarpur, A. and Ghaemmaghami, P. (1987), "Instantaneous optimal control laws for tall buildings under seismic excitations", NCEER Technical Report 87-0007, National Center for Earthquake Engineering, Buffalo.
  34. Yuen, K.V., Liang, P.F. and Kuok, S.C. (2013). "Online estimation of noise parameters for Kalman filter", Struct. Eng. Mech., 47(3), 361-381. https://doi.org/10.12989/sem.2013.47.3.361

Cited by

  1. Improving the Reliability of Photovoltaic and Wind Power Storage Systems Using Least Squares Support Vector Machine Optimized by Improved Chicken Swarm Algorithm vol.9, pp.18, 2017, https://doi.org/10.3390/app9183788
  2. Numerical and experimental research on actuator forces in toggled active vibration control system (Part I: Numerical) vol.25, pp.2, 2020, https://doi.org/10.12989/sss.2020.25.2.229