과제정보
연구 과제 주관 기관 : Lembaga Pengelola Dana Pendidikan (LPDP)
참고문헌
- Bahraini, S.M.S., Eghtesad, M., Farid, M. and Ghavanloo, E. (2014), "Analysis of an electrically actuated fractional model of viscoelastic microbeams", Struct. Eng. Mech., 52(5), 937. https://doi.org/10.12989/sem.2014.52.5.937
- Bergstörm, J.S. and Boyce, M.C. (2001), "Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues", J. Mech. Mater., 33(9), 523-530. https://doi.org/10.1016/S0167-6636(01)00070-9
- Bortot, E., Denzer, R., Menzel, A. and Gei, M. (2016), "Analysis of viscoelastic soft dielectric elastomer generators operating in an electrical circuit", Int. J. Solid. Struct., 78, 205-215.
- Brochu, P. and Pei, Q. (2010), "Advances in dielectric elastomers for actuators and artificial muscles", Macromol. Rapid Commun., 31(1), 10-36. https://doi.org/10.1002/marc.200900425
- Dorfmann, A. and Ogden, R.W. (2006), "Nonlinear electroelastic deformations", J. Elasticity, 82(2), 99-127. https://doi.org/10.1007/s10659-005-9028-y
- Herrmann, L.R. and Peterson, F.E. (1968), "A numerical procedure for viscoelastic stress analysys", Proceedings of the Seventh Meeting of ICRPG Mechanical Behaviour Working Group, Orlando.
- Holzapfel, G.A. (1996), "On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures", Int. J. Numer. Meth. Eng., 39, 3903-3926. https://doi.org/10.1002/(SICI)1097-0207(19961130)39:22<3903::AID-NME34>3.0.CO;2-C
- Itskov, M. and Khiem, V.N. (2014), "A polyconvex anisotropic free energy function for electro-and magneto-rheological elastomers", Math. Mech. Solid., 1081286514555140.
- Kornbluh, R.D., Pelrine, R., Prahlad, H., Wong-Foy, A., McCoy, B., Kim, S. and Low, T. (2012), "From boots to buoys: promises and challenges of dielectric elastomer energy harvesting", In Electroactivity in Polymeric Materials, Springer, US.
- Kramarenko, E.Y., Chertovich, A.V., Stepanov, G.V., Semisalova, A.S., Makarova, L.A., Perov, N.S. and Khokhlov, A.R. (2015), "Magnetic and viscoelastic response of elastomers with hard magnetic filler", Smart Mater. Struct., 24(3), 035002. https://doi.org/10.1088/0964-1726/24/3/035002
- Liu, Y., Han, H., Liu, T., Yi, J., Li, Q. and Inoue, Y. (2016), "A novel tactile sensor with electromagnetic induction and its application on stick-slip interaction detection", Sensor., 16(4), 430. https://doi.org/10.3390/s16040430
- Miehe, C., Vallicotti, D. and Zah, D. (2015), "Computational structural and material stability analysis in finite electro-elastostatics of electro-active materials", Int. J. Numer. Meth. Eng., 102(10), 1605-1637. https://doi.org/10.1002/nme.4855
- Nguyen, C.T., Phung, H., Nguyen, T.D., Lee, C., Kim, U., Lee, D., Moon, H., Koo, J., Nam, J. and Choi, H.R. (2014), "A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators", Smart Mater. Struct., 23(6), 065005. https://doi.org/10.1088/0964-1726/23/6/065005
- Reese, S. and Govindjee, S. (1998), "A theory of finite viscoelasticity and numerical aspects", Int. J. Solid. Struct., 35(26), 3455-3482. https://doi.org/10.1016/S0020-7683(97)00217-5
- Sahu, R.K. and Patra, K. (2016), "Rate-dependent mechanical behavior of VHB 4910 elastomer", Mech. Adv. Mater. Struct., 23(2), 170-179. https://doi.org/10.1080/15376494.2014.949923
- Simo, J.C. (1987), "On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects", Comput. Meth. Appl. Mech. Eng., 60(2), 153-173. https://doi.org/10.1016/0045-7825(87)90107-1
- Sun, W., Jung, J. and Seok, J. (2015) "Frequency-tunable electromagnetic energy harvester using magneto-rheological elastomer", J. Intel. Mater. Syst. Struct., 1045389X15590274.
- Taylor, R.L., Pister, K.S. and Goudreau, G.L. (1970), "Thermomechanical analysis of viscoelastic solids", Int. J. Numer. Meth. Eng., 2, 45-59. https://doi.org/10.1002/nme.1620020106
- Truesdell, C. and Toupin, R. (1960), The Classical Field Theories, Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie, Springer, Berlin Heidelberg.
- Tscharnuter, D. and Muliana, A. (2013), "Nonlinear response of viscoelastic polyoxymethylene (POM) at elevated temperatures", Polymer, 54(3), 1208-1217. https://doi.org/10.1016/j.polymer.2012.12.043
- Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2015), "Stochastic microvibration response characteristics of a sandwich plate with MR visco-elastomer core and mass", Smart Struct. Syst., 16(1), 141-162. https://doi.org/10.12989/sss.2015.16.1.141