DOI QR코드

DOI QR Code

Stress dependent relaxation time in large deformation

  • Waluyo, Sugeng (Department of Industrial Engineering, University of Jenderal Soedirman)
  • 투고 : 2016.05.18
  • 심사 : 2016.10.12
  • 발행 : 2017.02.10

초록

This work presents a new strategy to model stress dependent relaxation process in large deformation. The strategy is relied on the fact that in some particular soft materials undergoing large deformation, e.g., elastomers, rubbers and soft tissues, the relaxation time depends strongly on stress levels. To simplify the viscoelastic model, we consider that the relaxation time is the function of previous elastic deviatoric stress state experienced by materials during loading. Using the General Maxwell Model (GMM), we simulate numerically conditions with the constant and the stress dependent relaxation time for uniaxial tension and compression loading. Hence, it can be shown that the proposed model herein not only can represent different relaxation time for different stress level but also maintain the capability of the GMM to model hysteresis phenomena.

키워드

과제정보

연구 과제 주관 기관 : Lembaga Pengelola Dana Pendidikan (LPDP)

참고문헌

  1. Bahraini, S.M.S., Eghtesad, M., Farid, M. and Ghavanloo, E. (2014), "Analysis of an electrically actuated fractional model of viscoelastic microbeams", Struct. Eng. Mech., 52(5), 937. https://doi.org/10.12989/sem.2014.52.5.937
  2. Bergstörm, J.S. and Boyce, M.C. (2001), "Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues", J. Mech. Mater., 33(9), 523-530. https://doi.org/10.1016/S0167-6636(01)00070-9
  3. Bortot, E., Denzer, R., Menzel, A. and Gei, M. (2016), "Analysis of viscoelastic soft dielectric elastomer generators operating in an electrical circuit", Int. J. Solid. Struct., 78, 205-215.
  4. Brochu, P. and Pei, Q. (2010), "Advances in dielectric elastomers for actuators and artificial muscles", Macromol. Rapid Commun., 31(1), 10-36. https://doi.org/10.1002/marc.200900425
  5. Dorfmann, A. and Ogden, R.W. (2006), "Nonlinear electroelastic deformations", J. Elasticity, 82(2), 99-127. https://doi.org/10.1007/s10659-005-9028-y
  6. Herrmann, L.R. and Peterson, F.E. (1968), "A numerical procedure for viscoelastic stress analysys", Proceedings of the Seventh Meeting of ICRPG Mechanical Behaviour Working Group, Orlando.
  7. Holzapfel, G.A. (1996), "On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures", Int. J. Numer. Meth. Eng., 39, 3903-3926. https://doi.org/10.1002/(SICI)1097-0207(19961130)39:22<3903::AID-NME34>3.0.CO;2-C
  8. Itskov, M. and Khiem, V.N. (2014), "A polyconvex anisotropic free energy function for electro-and magneto-rheological elastomers", Math. Mech. Solid., 1081286514555140.
  9. Kornbluh, R.D., Pelrine, R., Prahlad, H., Wong-Foy, A., McCoy, B., Kim, S. and Low, T. (2012), "From boots to buoys: promises and challenges of dielectric elastomer energy harvesting", In Electroactivity in Polymeric Materials, Springer, US.
  10. Kramarenko, E.Y., Chertovich, A.V., Stepanov, G.V., Semisalova, A.S., Makarova, L.A., Perov, N.S. and Khokhlov, A.R. (2015), "Magnetic and viscoelastic response of elastomers with hard magnetic filler", Smart Mater. Struct., 24(3), 035002. https://doi.org/10.1088/0964-1726/24/3/035002
  11. Liu, Y., Han, H., Liu, T., Yi, J., Li, Q. and Inoue, Y. (2016), "A novel tactile sensor with electromagnetic induction and its application on stick-slip interaction detection", Sensor., 16(4), 430. https://doi.org/10.3390/s16040430
  12. Miehe, C., Vallicotti, D. and Zah, D. (2015), "Computational structural and material stability analysis in finite electro-elastostatics of electro-active materials", Int. J. Numer. Meth. Eng., 102(10), 1605-1637. https://doi.org/10.1002/nme.4855
  13. Nguyen, C.T., Phung, H., Nguyen, T.D., Lee, C., Kim, U., Lee, D., Moon, H., Koo, J., Nam, J. and Choi, H.R. (2014), "A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators", Smart Mater. Struct., 23(6), 065005. https://doi.org/10.1088/0964-1726/23/6/065005
  14. Reese, S. and Govindjee, S. (1998), "A theory of finite viscoelasticity and numerical aspects", Int. J. Solid. Struct., 35(26), 3455-3482. https://doi.org/10.1016/S0020-7683(97)00217-5
  15. Sahu, R.K. and Patra, K. (2016), "Rate-dependent mechanical behavior of VHB 4910 elastomer", Mech. Adv. Mater. Struct., 23(2), 170-179. https://doi.org/10.1080/15376494.2014.949923
  16. Simo, J.C. (1987), "On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects", Comput. Meth. Appl. Mech. Eng., 60(2), 153-173. https://doi.org/10.1016/0045-7825(87)90107-1
  17. Sun, W., Jung, J. and Seok, J. (2015) "Frequency-tunable electromagnetic energy harvester using magneto-rheological elastomer", J. Intel. Mater. Syst. Struct., 1045389X15590274.
  18. Taylor, R.L., Pister, K.S. and Goudreau, G.L. (1970), "Thermomechanical analysis of viscoelastic solids", Int. J. Numer. Meth. Eng., 2, 45-59. https://doi.org/10.1002/nme.1620020106
  19. Truesdell, C. and Toupin, R. (1960), The Classical Field Theories, Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie, Springer, Berlin Heidelberg.
  20. Tscharnuter, D. and Muliana, A. (2013), "Nonlinear response of viscoelastic polyoxymethylene (POM) at elevated temperatures", Polymer, 54(3), 1208-1217. https://doi.org/10.1016/j.polymer.2012.12.043
  21. Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2015), "Stochastic microvibration response characteristics of a sandwich plate with MR visco-elastomer core and mass", Smart Struct. Syst., 16(1), 141-162. https://doi.org/10.12989/sss.2015.16.1.141