Acknowledgement
Supported by : Inha University
References
- ANSYS Release 11.0 (2006), Documentation for ANSYS, ANSYS, Inc, Canonsburg, PA, USA.
- Chakraborty, A. and Gopalakrishinan, S. (2003), "A spectrally formulated finite element for wave propagation in functionally graded beams", Int. J. Solid. Struct., 40(10), 2421-2448. https://doi.org/10.1016/S0020-7683(03)00029-5
- Efraim, E. and Eisenberger, M. (2007), "Exact solution analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299(4-5), 720-738. https://doi.org/10.1016/j.jsv.2006.06.068
- Hong, M., Park, I. and Lee, U. (2014), "Dynamics and waves characteristics of the FGM axial bars by using spectral element method", Compos. Struct., 107, 585-593. https://doi.org/10.1016/j.compstruct.2013.08.022
- Hong, M. and Lee, U. (2015), "Dynamics of a functionally graded material axial bar: spectral element modeling and analysis", Compos. Part B-Eng., 69, 427-434. https://doi.org/10.1016/j.compositesb.2014.10.022
- Horgan, C.O. (1999), "The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials", J. Elasticity, 55(1), 43-59. https://doi.org/10.1023/A:1007625401963
- Horgan, C.O. (2007), "On the torsion of functionally graded anisotropic linearly elastic bars", IMA J. Appl. Math., 72(5), 556-562. https://doi.org/10.1093/imamat/hxm027
- Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform crosssection", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029
- Kreyszig, E. (1972), Advanced Engineering Mathematics, John Wiley & Sons, New York.
- Kutis, V. and Murin, J. (2006), "Stability of slender beam-column with locally varying Young's modulus", Struct. Eng. Mech. 23(1), 15-27 https://doi.org/10.12989/sem.2006.23.1.015
- Lee, U. (2009), Spectral Element Method in Structural Dynamics, John Wiley & Sons, Singapore.
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behavior of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib. 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Maalawi, K.Y. (2011), "Functionally graded bars with enhanced dynamic performance", J. Mech. Mater. Struct., 6(1-4), 377-393. https://doi.org/10.2140/jomms.2011.6.377
- Markworth, A.J., Ramesh, K.S. and Parks Jr., W.P. (1995), "Modeling studies applied to functionally graded materials", J. Mater. Sci., 30(9), 2183-2193. https://doi.org/10.1007/BF01184560
- Mashat, D.S., Carrera, E., Zenkour, A.M., Khateeb, S.A.A. and Filippi, M. (2014), "Free vibration of FGM layered beams by various theories and finite elements", Compos. Part B-Eng., 59, 269-278. https://doi.org/10.1016/j.compositesb.2013.12.008
- MATLAB User's Guide (1993), MathWorks, Natick, MA, USA.
- Meirovitch, L. (1967), Analytical Methods in Vibrations, Macmillan, London.
- Menaa, R., Tounsi, A., Mouaici, F., Mechab, I., Zidi, M. and Bedia, E.A.A. (2012), "Analytical solutions for static shear correction factor of functionally graded rectangular beams", Mech. Adv. Mater. Struct., 19(8), 641-652. https://doi.org/10.1080/15376494.2011.581409
- Murin, J., Aminbaghai, M., Hrabovsky, J., Kutis, V. and Kugler, S. (2013), "Modal analysis of the FGM beams with effect of the shear correction function", Compos. Part B-Eng., 45(1), 1575-1582. https://doi.org/10.1016/j.compositesb.2012.09.084
- Murin, J., Aminbaghai, M., Hrabovsky, J., Gogola, R. and Kugler, S. (2016), "Beam finite element for modal analysis of FGM structures", Eng. Struct., 121, 1-18. https://doi.org/10.1016/j.engstruct.2016.04.042
- Murin, J., Kutis, V. and Masny, M. (2008), "An effective solution of electro-thermo-structural problem of uni-axially graded material", Struct. Eng. Mech., 28(6), 695 -713. https://doi.org/10.12989/sem.2008.28.6.695
- Murin, J., Kutis, V., Paulech, J. and Hrabovsky, J. (2011), "Electric-thermal link finite element made of FGM with spatially variation of material properties", Compos. Part B-Eng., 42, 1966-1979. https://doi.org/10.1016/j.compositesb.2011.05.030
- Newland, D.E. (1993), Random Vibrations: Spectral and Wavelet Analysis, Longman, New York.
- Nguyen, T.K., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B-Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011
- Parker, D.F. (2009), "Waves and statics for functionally graded materials and laminates", Int. J. Eng. Sci., 47(11-12), 1315-1321. https://doi.org/10.1016/j.ijengsci.2009.04.001
- Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B-Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027
- Shahba, A., Attarnejad, R. and Hajilar, S. (2011), "Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams", Shock Vib., 18(5), 683-696. https://doi.org/10.1155/2011/591716
- Timoshenko, S.P. and Goodier, J.N. (1934), Theory of Elasticity, McGraw-Hill, New York.
- Xiang, H.J. and Yang, J. (2008), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", Compos. Part B-Eng., 39(2), 292-303. https://doi.org/10.1016/j.compositesb.2007.01.005
- Yu, Z. and Chu, F. (2009), "Identification of crack in functionally graded material beams using the p-version of finite element method", J. Sound. Vib., 325(1-2), 69-84. https://doi.org/10.1016/j.jsv.2009.03.010