References
- Aouici, H., Bouchelaghem, H., Yallese, M.A., Elbah, M. and Fnides, B. (2014), "Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology", Int. J. Adv. Manuf. Techol., 73(9-12), 1775-1788. https://doi.org/10.1007/s00170-014-5950-0
- Aurich, J.C., Eyrisch, T. and Zimmermann, M. (2012), "Effect of the coating system on the tool performance when turning heat treated AISI 4140", Procedia CIRP, 1, 214-219. https://doi.org/10.1016/j.procir.2012.04.037
- Azizi, M.W., Belhadi, S., Yallese, M.A., Mabrouki, T. and Rigal, J.F. (2012), "Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel", J. Mech. Sci. Technol., 26(12), 4105-4114. https://doi.org/10.1007/s12206-012-0885-6
- Bouacha, K., Yallese, M.A., Khamel, S. and Belhadi, S. (2014), "Analysis and optimization of hard turning operation using cubic boron nitride tool", Int. J. Refract. Metal. Hard Mater., 45, 160-178. https://doi.org/10.1016/j.ijrmhm.2014.04.014
- Bouchelaghem, H., Yallese, M.A., Amirat, A., and Belhadi, S. (2007), "Wear behaviour of CBN tool when turning hardened AISI D3 steel", Mechanika, 65(3), 57-65.
- Bouzid, L., Boutabba, S., Yallese, M.A., Belhadi, S. and Girardin, F. (2014), "Simultaneous optimization of surface roughness and material removal rate for turning of X20Cr13 stainless steel", Int. J. Adv. Manuf. Techol., 74(5-8), 879-891. https://doi.org/10.1007/s00170-014-6043-9
- Cakir, M.C., Ensarioglu, C. and Demirayak, I. (2009), "Mathematical modeling of surface roughness for evaluating the effects of cutting parameters and coating material", J. Mater. Pr. Tech., 209(1), 102-109. https://doi.org/10.1016/j.jmatprotec.2008.01.050
- Chinchanikar, S. and Choudhury, S.K. (2013), "Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel: An optimization approach", Measur., 46(4), 1572-1584. https://doi.org/10.1016/j.measurement.2012.11.032
- Chinchanikar, S. and Choudhury, S.K. (2015), "Machining of hardened steel-Experimental investigations, performance modeling and cooling techniques: A review", Int. J. Mach. Tool. Manuf., 89, 95-109. https://doi.org/10.1016/j.ijmachtools.2014.11.002
- Das, S.R., Dhupal, D. and Kumar, A. (2015), "Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool", Measurement, 62, 108-126. https://doi.org/10.1016/j.measurement.2014.11.008
- Elbah, M., Yallese, M.A., Aouici, H., Mabrouki, T., and Rigal, J.F. (2013), "Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel", Measurement, 46(9), 3041-3056. https://doi.org/10.1016/j.measurement.2013.06.018
- Grzesik, W. (1998), "The role of coatings in controlling the cutting process when turning with coated indexable inserts", J. Mater. Pr. Technol., 79(1), 133-143. https://doi.org/10.1016/S0924-0136(97)00491-3
- Grzesik, W. and Nieslony, P. (2004), "Prediction of friction and heat flow in machining incorporating thermophysical properties of the coating-chip interface", Wear, 256(1), 108-117. https://doi.org/10.1016/S0043-1648(03)00390-9
- Grzesik, W., Rech, J., Zak, K. and Claudin, C. (2009), "Machining performance of pearlitic-ferritic nodular cast iron with coated carbide and silicon nitride ceramic tools", Int. J. Mach. Tool. Manuf., 49(2), 125-133. https://doi.org/10.1016/j.ijmachtools.2008.10.003
- Hayajneh, M.T., Tahat, M.S. and Bluhm, J. (2007), "A study of the effects of machining parameters on the surface roughness in the end-milling process", Jordan J. Mech. Indus. Eng., 1, 1-5.
- Hessainia, Z., Belbah, A., Yallese, M.A., Mabrouki, T. and Rigal, J. F. (2013), "On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations", Measur., 46(5), 1671-1681. https://doi.org/10.1016/j.measurement.2012.12.016
- Khuri, A.I. and Mukhopadhyay, S. (2010), "Response surface methodology", Wiley Interdisc. Rev.: Comput. Statist., 2(2), 128-149. https://doi.org/10.1002/wics.73
- Makadia, A.J. and Nanavati, J.I. (2013), "Optimisation of machining parameters for turning operations based on response surface methodology", Measur., 46(4), 1521-1529. https://doi.org/10.1016/j.measurement.2012.11.026
- Meddour, I., Yallese, M.A., Khattabi, R., Elbah, M. and Boulanouar, L. (2015), "Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization", Int. J. Adv. Manuf. Techol.,77(5-8), 1387-1399. https://doi.org/10.1007/s00170-014-6559-z
- Neseli, S., Yaldiz, S. and Turkes, E. (2011), "Optimization of tool geometry parameters for turning operations based on the response surface methodology", Measur., 44(3), 580-587. https://doi.org/10.1016/j.measurement.2010.11.018
- Sahoo, A.K. and Sahoo, B. (2012), "Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts", Measur., 45(8), 2153-2165. https://doi.org/10.1016/j.measurement.2012.05.015
-
Sahoo, A.K. and Sahoo, B. (2013), "Performance studies of multilayer hard surface coatings (TiN/TiCN/
$Al_2O_3$ /TiN) of indexable carbide inserts in hard machining: Part-I (An experimental approach)", Measur., 46(8), 2854-2867. https://doi.org/10.1016/j.measurement.2013.03.024 - Senthilkumar, N. and Tamizharasan, T. (2014), "Effect of tool geometry in turning AISI 1045 steel: experimental investigation and FEM analysis", Arabian J. Sci. Eng., 39(6), 4963-4975. https://doi.org/10.1007/s13369-014-1054-2
- Upadhyay, V., Jain, P.K. and Mehta, N.K. (2013), "In-process prediction of surface roughness in turning of Ti-6Al-4V alloy using cutting parameters and vibration signals", Measur., 46(1), 154-160. https://doi.org/10.1016/j.measurement.2012.06.002
- Yallese, M.A., Boulanouar, L. and Chaoui, K. (2004), "Usinage de l'acier 100Cr6 trempe par un outil en nitrure de bore cubique", Mecaniq. Indust., 5(4), 355-368. https://doi.org/10.1051/meca:2004036
- Yallese, M.A., Chaoui, K., Zeghib, N., Boulanouar, L, and Rigal, J.F. (2009), "Hard machining of hardened bearing steel using cubic boron nitride tool", J. Mater. Pr. Technol., 209(2), 1092-1104. https://doi.org/10.1016/j.jmatprotec.2008.03.014
- Zhang, K., Deng, J., Meng, R., Gao, P. and Yue, H. (2015), "Effect of nano-scale textures on cutting performance of WC/Co-based Ti 55 Al 45 N coated tools in dry cutting", Int. J. Refract. Metal. Hard Mater., 51, 35-49. https://doi.org/10.1016/j.ijrmhm.2015.02.011
Cited by
- Influence of the cutting condition on the wear and the surface roughness in the steel AISI 4140 with mixed ceramic and diamond tool pp.1726-0531, 2018, https://doi.org/10.1108/JEDT-05-2018-0086
- Analysis of cutting forces and roughness during hard turning of bearing steel vol.66, pp.3, 2018, https://doi.org/10.12989/sem.2018.66.3.285
- Metamodel based multi-objective design optimization of laminated composite plates vol.67, pp.3, 2017, https://doi.org/10.12989/sem.2018.67.3.301
- Materials, properties, manufacturing methods and cutting performance of innovative ceramic cutting tools − a review vol.6, pp.None, 2017, https://doi.org/10.1051/mfreview/2019016
- Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration vol.70, pp.4, 2017, https://doi.org/10.12989/sem.2019.70.4.395
- Achieving Optimal Process Parameters during Hard Turning of AISI 52100 Bearing Steel Using Hybrid GRA-PCA vol.818, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/kem.818.87
- Search for accurate RSM metamodels for structural engineering vol.38, pp.21, 2017, https://doi.org/10.1177/0731684419862346
- Machinability investigation and sustainability assessment in FDHT with coated ceramic tool vol.34, pp.5, 2017, https://doi.org/10.12989/scs.2020.34.5.681
- Design optimization in hard turning of E19 alloy steel by analysing surface roughness, tool vibration and productivity vol.73, pp.5, 2017, https://doi.org/10.12989/sem.2020.73.5.501
- Experimental investigations on surface integrity and chip morphology in hard tuning of AISI D3 steel under sustainable nanofluid-based minimum quantity lubrication vol.42, pp.10, 2017, https://doi.org/10.1007/s40430-020-02594-x
- Design optimization for analysis of surface integrity and chip morphology in hard turning vol.76, pp.5, 2020, https://doi.org/10.12989/sem.2020.76.5.561
- Sustainability Assessment and Machinability Investigation of Austenitic Stainless Steel in Finish Turning with Advanced Ultra-Hard SiAlON Ceramic Tool under Different Cutting Environments vol.13, pp.1, 2017, https://doi.org/10.1007/s12633-020-00409-1
- Measurement of roughness on hardened D-3 steel and wear of coated tool inserts vol.43, pp.3, 2017, https://doi.org/10.1177/0142331220938554
- Study on vibration and surface roughness in MQCL turning of stainless steel vol.65, pp.None, 2021, https://doi.org/10.1016/j.jmapro.2021.03.041
- Machining force comparison for surface defect hard turning and conventional hard turning of AISI 52100 steel vol.13, pp.3, 2017, https://doi.org/10.13111/2066-8201.2021.13.3.17
- Analysis of tool vibration and surface roughness during turning process of tempered steel samples using Taguchi method vol.235, pp.5, 2017, https://doi.org/10.1177/09544089211001976
- Machinability investigation and sustainability assessment in hard turning of AISI D3 steel with coated carbide tool under nanofluid minimum quantity lubrication-cooling condition vol.235, pp.22, 2021, https://doi.org/10.1177/0954406221993844