DOI QR코드

DOI QR Code

RBDO analysis of the aircraft wing based aerodynamic behavior

  • 투고 : 2016.05.04
  • 심사 : 2016.10.21
  • 발행 : 2017.02.25

초록

The need of progress in engineering designs especially for aerospace structure is nowadays becoming a major industry request. The objectives of this work are to quantify the influence of material and operational uncertainties on the performance of the aerodynamic behavior of an Aircraft Wing, and to give a description of the most commonly used methods for reliability based design optimization (RBDO) to point out the advantages of the application of this method in the design process. A new method is proposed, called Safest Point (SP) that can efficiently give the reliability-based optimum solution for freely vibrating structures with and without fluid flow.

키워드

참고문헌

  1. Abbasnia, R., Shayanfar, M. and Khodam, A. (2014), "Reliabilitybased design optimization of structural systems using a hybrid genetic algorithm", Struct. Eng. Mech., 52(6), 1099-1120. https://doi.org/10.12989/sem.2014.52.6.1099
  2. Al Kheer, A.A., El Hami, A. and Kharmanda, M.G. (2011), "Reliability based design for soil tillage machines", J. Terramech., 48(1), 57-64. https://doi.org/10.1016/j.jterra.2010.06.001
  3. ANSYS Inc. (2013), Ansys Fluent Theory.
  4. Ashgriz, N. and Mostaghimi, J. (2002), Fluid Flow Handbook, McGraw-Hill Handbooks, Ch. An Introduction to Computational Fluid Dynamics.
  5. Benra, F., Dohmen, H., Pei, J., Schuster, S. and Wan, B. (2011), "A comparison of one-way and two-way coupling methods for numerical analysis of fluid structure interactions", J. Appl. Math., 2011, 40-56.
  6. Beyaoui, M., Guerine, A., Walha, L., El Hami, A., Fakhfakh, T. and Haddar, M. (2016), "Dynamic behavior of the one-stage gear system with uncertainties", Struct. Eng. Mech., 58(3), 443-458. https://doi.org/10.12989/sem.2016.58.3.443
  7. Chopra, A. (2001), Dynamics of Structures, 2nd Edition, Pearson Prentice Hall.
  8. Dalton, S. K., Atamturktur, S., Farajpour, I. and Juang, C. H. (2013), "An optimization based approach for structural design considering safety, robustness and cost", Eng. Struct., 57, 356-363. https://doi.org/10.1016/j.engstruct.2013.09.040
  9. El Hami, A. and Radi, B. (1996), "Some decomposition methods in the analysis of repetitive structures", Comput. Struct., 58(5), 973-980. https://doi.org/10.1016/0045-7949(95)00206-V
  10. El Hami, A. and Radi, B. (2011), "Comparison study of different reliability-based design optimization approaches", Adv. Mater. Res., 274, 119-130.
  11. El Hami, A. and Radi, B. (2013), Incertitudes, Optimisation et Fiabilite des Structures, Hermes, Paris.
  12. El Hami, A. and Radi, B. (2013), Uncertainty and Optimization in Structural Mechanics, Wiley.
  13. El Maani, R., Radi, B. and El Hami, A. (2015), "Reliability study of a coupled three dimensional system with uncertain parameters", J. Adv. Mater. Res., 1099, 87-93. https://doi.org/10.4028/www.scientific.net/AMR.1099.87
  14. Grandhi, R. and Wang, L. (1998), "Reliability-based structural optimization using improved two-point adaptive nonlinear approximations", Finite Elem. Anal. Des., 29, 35-48. https://doi.org/10.1016/S0168-874X(98)00007-9
  15. Huang, S., Li, R. and Li, Q.S. (2013), "Numerical simulation on fluid-structure interaction of wind around super-tall building at high Reynolds number conditions", Struct. Eng. Mech., 46(2), 197-212. https://doi.org/10.12989/sem.2013.46.2.197
  16. Jeong, K., Ahn, B. and Lee, S. (2001), "Modal analysis of perforated rectangular plates in contact with water", Struct. Eng. Mech., 12(2), 189-200. https://doi.org/10.12989/sem.2001.12.2.189
  17. Kharmanda, G., El Hami, A. and Olhoff, N. (2004), Frontiers on Global Optimization, Kluwer Academic, Ch. Global Reliability Based Design Optimization, 255-274.
  18. Mohsine, A. and El Hami, A. (2010), "A robust study of reliability-based optimization methods under eigen-frequency", Comput. Meth. Appl. Mech. Eng., 199, 1006-1018. https://doi.org/10.1016/j.cma.2009.11.012
  19. Moro, T., El Hami, A. and Moudni, A.E. (2002), "Reliability analysis of a mechanical contact between deformable solids", A Probab. Eng. Mech., 17(3), 227-232. https://doi.org/10.1016/S0266-8920(02)00007-3
  20. Radi, B. and El Hami, A. (2007), "Reliability analysis of the metal forming process", Math. Comput. Model., 45(3-4), 431-439. https://doi.org/10.1016/j.mcm.2006.05.013
  21. Schmitt, V. and Charpin, F. (1979), "Pressure distributions on the onera m6 wing at transonic mach numbers", Agard-ar-138-experimental database for computer program assessment.
  22. Souli, M. and Benson, D. J. (2010), Arbitrary Lagrangian-Eulerian and Fluid-Structure Interaction, ISTE Ltd and John Wiley & Sons.
  23. Tu, J., Choi, K. and Park, Y. (1999), "A new study on reliabilitybased design optimization", J. Mech. Des., 121(4), 557-564. https://doi.org/10.1115/1.2829499
  24. Versteeg, H. and Malalasekera, W. (2007), An Introduction to Computational Fluid Dynamics, 2nd Edition, Pearson Prentice Hall.
  25. Youn, B., Choi, K. and Park, Y. (2003), "Hybrid analysis method for reliability-based design optimization", J. Mech. Des., 25(2), 221-232.
  26. Yun, Z. and Hui, Y. (2011), "Coupled fluid structure flutter analysis of a transonic fan", Chin. J. Aeronaut., 24, 258-264. https://doi.org/10.1016/S1000-9361(11)60031-9

피인용 문헌

  1. Vibratory Reliability Analysis of an Aircraft’s Wing via Fluid–Structure Interactions vol.4, pp.3, 2017, https://doi.org/10.3390/aerospace4030040
  2. The Cosserat Point Element as an Accurate and Robust Finite Element Formulation for Implicit Dynamic Simulations pp.1793-6969, 2020, https://doi.org/10.1142/S0219876218440061
  3. Multiobjective backtracking search algorithm: application to FSI pp.1615-1488, 2018, https://doi.org/10.1007/s00158-018-2056-6