DOI QR코드

DOI QR Code

Crystal development and growth mechanism by pretreatment process for zinc crystalline glaze

아연 결정유약 전처리 공정을 통한 결정생성 및 성장의 mechanism

  • Lee, Chiyoun (Depart. of Ceramic Art, Hanyang Women's University)
  • 이지연 (한양여자대학교 도예과)
  • Received : 2016.11.28
  • Accepted : 2017.01.06
  • Published : 2017.02.28

Abstract

In this study, the effect on the zinc nuclei crystallization caused by changes preprocessing of the zinc crystalline glaze preparation has been studied. The mechanism of the nuclei formation in the crystalline glaze and development of the nuclei by studying the preprocessing step was explained. The preprocessing step was improved by altering mixing process of the materials prior to sintering: number of sieving dispersion process and ultra-sonication prove tests with various duration of sonication. According to the result, the sieving and sonication of the starting materials facilitated the interface reactions of $ZnO-SiO_2$ from $680^{\circ}C$ where low temperature willemite is formulated, and altered Si bonding for the easier bonding between Zn-Si. In other words, solely sieving was enough to accelerate the formation of willemite in low temperature. When the particles were distributed evenly by sonication, the willemite formation was even more significant.

본 연구는 아연결정 Willemite($Zn_2SiO_4$)유의 합성에서 소성 전의 전처리 과정이 결정의 결합반응에 미치는 영향을 규명하고자 한다. 시료 전처리 방법으로 원료의 체거름과 초음파분산실험을 통해서 실험 분석하였다. 그 결과, 기본유시료의 체거름과 초음파분산은 물리적 공정만으로 Zn-Si 결합이 용이하도록 Si 본딩에 변화를 가져와 저온($680^{\circ}C$)에서부터 willemite의 생성을 촉진시켰다. 원료의 분산은 체거름 만으로도 willemite의 저온 생성을 촉진시키는 것으로 나타났으며 특히 초음파 분산 실험의 결과는 willemite생성의 저온 반응에 효과가 더욱 극명하게 나타났다. 이러한 비 소성 전 처리 공정에 의한 결정생성은 경제적으로도 큰 가치가 있을 것으로 판단된다.

Keywords

References

  1. D. Creber, "Crystalline glazes", Craftsman House, Australia (1997) p. 9.
  2. R.A. Eppler and D.R. Eppler, "Glazes and glass coatings", J. Am. Ceram. Soc., Westerville, OH, U.S.A. (1998) p. 70.
  3. F.H. Norton, "The control of crystalline glazes", J. Am. Ceram. Soc. 20 (1937) 217. https://doi.org/10.1111/j.1151-2916.1937.tb19892.x
  4. C.W. Parmelee, "Ceramic glaze", 3rd ed., Cahners Publishing Co. Inc., York, PA, U.S.A. (1973) p. 327.
  5. E. Kato and H. Takashima, "Study on the structure of zinc opaque glazes", J. Japan Ceram. Soc. 15 (1965) 69.
  6. J.G. Ma, Y.C. Liu, C.S. Xu, Y.X. Liu, C.L. Shao, H.Y. Xu, J.Y. Zhang, Y.M. Lu, D.Z. Shen and X.W. Fan, "Preparation and characterization of ZnO particles embedded in $SiO_2$ matrix by reactive magnetron sputtering", J. Appl. Physics. 97 (2005) 1.
  7. C.Y. Lee and B.H. Lee, "A study of nucleation and growth in zinc crystal glaze by firing conditions (in Korean)", J. Kor. Ceram. Soc. 46 (2009) 253. https://doi.org/10.4191/KCERS.2009.46.3.253
  8. H.S. Lee, "A study of nucleation and growth in zinc crystal glaze by firing conditions", J. Kor. Ceram. Soc. 50 (2013) 116. https://doi.org/10.4191/kcers.2013.50.2.116
  9. W.P. Griffith, "Raman studies on rock-forming minerals. Part I. Orthosilicates and cyclosilicates", J. Chem. Soc. A (1969) 1372. https://doi.org/10.1039/j19690001372
  10. T.A. Sidorov, "Raman spectra and molecular structure of silicates", Russ. J. Inorg. Chem. 52 (2007) 1586. https://doi.org/10.1134/S0036023607100191
  11. H.F.W. Taylor, "Mineral", Amer. 47 (1962) 932.
  12. R.H. French, "Origins and applications of london dispersion forces and hamaker constants in ceramics", J. Am. Ceram. Soc. 83 (2000) 2117.
  13. J. Luo and Y.M. Chiang, "Wetting and prewetting on ceramic surfaces", Annu. Rev. Mater. Res. 38 (2008) 227. https://doi.org/10.1146/annurev.matsci.38.060407.132431
  14. A. Bloise, E. Barrese, C. Apollarl and D. Miriello, "Flux growth and characterization of Ti-and Ni-doped forsterite single crystals", Cryst. Res. Technol. 5 (2009) 463.