DOI QR코드

DOI QR Code

Predicting shear strength of SFRC slender beams without stirrups using an ANN model

  • Keskin, Riza S.O. (Department of Civil Engineering, Yildiz Technical University)
  • Received : 2014.12.09
  • Accepted : 2016.10.27
  • Published : 2017.03.10

Abstract

Shear failure of reinforced concrete (RC) beams is a major concern for structural engineers. It has been shown through various studies that the shear strength and ductility of RC beams can be improved by adding steel fibers to the concrete. An accurate model predicting the shear strength of steel fiber reinforced concrete (SFRC) beams will help SFRC to become widely used. An artificial neural network (ANN) model consisting of an input layer, a hidden layer of six neurons and an output layer was developed to predict the shear strength of SFRC slender beams without stirrups, where the input parameters are concrete compressive strength, tensile reinforcement ratio, shear span-to-depth ratio, effective depth, volume fraction of fibers, aspect ratio of fibers and fiber bond factor, and the output is an estimate of shear strength. It is shown that the model is superior to fourteen equations proposed by various researchers in predicting the shear strength of SFRC beams considered in this study and it is verified through a parametric study that the model has a good generalization capability.

Keywords

References

  1. ACI Committee 318 (2011), Building Code Requirements for Structural Concrete (ACI 318M-11) and Commentary, Farmington Hills, MI, USA.
  2. ACI Committee 544 (1988), Design Considerations for Steel Fiber Reinforced Concrete (ACI 544.4R-88) (Reapproved 1999), Farmington Hills, MI, USA.
  3. ACI Committee 544 (1996), State-of-the-Art Report on Fiber Reinforced Concrete (ACI 544.1R-96) (Reapproved 2009), Farmington Hills, MI, USA.
  4. Adhikary, B.B. and Mutsuyoshi, H. (2006), "Prediction of shear strength of steel fiber RC beams using neural networks", Constr. Build. Mater., 20(9), 801-811. https://doi.org/10.1016/j.conbuildmat.2005.01.047
  5. Ahn, N., Jang, H. and Park, D.K. (2007), "Presumption of shear strength of steel fiber reinforced concrete beam using artificial neural network model", J. Appl. Polym. Sci., 103(4), 2351-2358. https://doi.org/10.1002/app.25121
  6. Aoude, H., Belghiti, M., Cook, W.D. and Mitchell, D. (2012), "Response of steel fiber-reinforced concrete beams with and without stirrups", ACI Struct. J., 109(3), 359-367.
  7. Arslan, G. (2008), "Cracking shear strength of RC slender beams without web reinforcement", J. Civ. Eng. Manage., 14(3), 177-182. https://doi.org/10.3846/1392-3730.2008.14.14
  8. Arslan, G. (2012), "Diagonal tension failure of RC beams without stirrups", J. Civ. Eng. Manage., 18(2), 217-226. https://doi.org/10.3846/13923730.2012.671264
  9. Arslan, G. (2014), "Shear strength of steel fiber reinforced concrete (SFRC) slender beams", KSCE J. Civ. Eng., 18(2), 587-594. https://doi.org/10.1007/s12205-014-0320-x
  10. Ashour, S.A., Hasanain, G.S. and Wafa, F.F. (1992), "Shear behavior of high-strength fiber reinforced concrete beams", ACI Struct. J., 89(2), 176-184.
  11. Bagdatli, S.M., Ozkaya, E., Ozyigit, H.A. and Tekin, A. (2009), "Nonlinear vibrations of stepped beam systems using artificial neural networks", Struct. Eng. Mech., 33(1), 15-30. https://doi.org/10.12989/sem.2009.33.1.015
  12. Batson, G., Jenkins, E. and Spatney, R. (1972), "Steel fibers as shear reinforcement in beams", ACI. J. Proc., 69(10), 640-644.
  13. Bazant, Z.P. and Kim, J.K. (1984), "Size effect in shear failure of longitudinally reinforced beams", ACI J. Proc., 81(5), 456-468.
  14. Bazant, Z.P. and Sun, H.H. (1987), "Size effect in diagonal shear failure: influence of aggregate size and stirrups", ACI Mater. J., 84(4), 259-272.
  15. Canadian Standard Association (2004), CSA A23.3-04 Design For Concrete Structures, Toronto, ON, Canada.
  16. Choi, K.K., Park, H.G. and Wight, J.K. (2007), "Shear strength of steel fiber-reinforced concrete beams without web reinforcement", ACI Struct. J., 104(1), 12-21.
  17. Cucchiara, C., La Mendola, L. and Papia, M. (2004), "Effectiveness of stirrups and steel fibres as shear reinforcement", Cement Concrete Compos., 26(7), 777-786. https://doi.org/10.1016/j.cemconcomp.2003.07.001
  18. Ding, Y., You, Z. and Jalali, S. (2011), "The composite effect of steel fibres and stirrups on the shear behaviour of beams using self-consolidating concrete", Eng. Struct., 33(1), 107-117. https://doi.org/10.1016/j.engstruct.2010.09.023
  19. Dinh, H.H., Parra-Montesinos, G.J. and Wight, J.K. (2010), "Shear behavior of steel fiber-reinforced concrete beams without stirrup reinforcement", ACI Struct. J., 107(5), 597-606.
  20. Dinh, H.H., Parra-Montesinos, G.J. and Wight, J.K. (2011), "Shear strength model for steel fiber reinforced concrete beams without stirrup reinforcement", ASCE J. Struct. Eng., 137(10), 1039-1051. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000362
  21. Dupont, D. and Vandewalle, L. (2003), "Shear capacity of concrete beams containing longitudinal reinforcement and steel fibers", ACI SP 216-06, 79-94.
  22. Foresee, F.D. and Hagan, M.T. (1997), "Gauss-Newton approximation to Bayesian learning", Proceedings of the 1997 International Joint Conference on Neural Networks, Houston, TX, USA.
  23. Gandomi, A.H., Alavi, A.H. and Yun, G.J. (2011), "Nonlinear modeling of shear strength of SFRC beams using linear genetic programming", Struct. Eng. Mech., 38(1), 1-25. https://doi.org/10.12989/sem.2011.38.1.001
  24. Hagan, M.T., Demuth, H.B. and Beale, M.H. (1996), Neural Network Design, PWS Publishing Company, Boston, MA, USA.
  25. Imam, M., Vandewalle, L. and Mortelmans, F. (1994), "Shear capacity of steel fiber high-strength concrete beams", Proceedings of the ACI International Conference on High Performance Concrete (SP-149), Singapore.
  26. Kadir, M.R.A. and Saeed, J.A. (1986), "Shear strength of fiber reinforced concrete beams", J. Eng. Technol., 4(3), 98-112.
  27. Kara, I.F. (2013), "Empirical modeling of shear strength of steel fiber reinforced concrete beams by gene expression programming", Neural. Comput. Appl., 23(3-4), 823-834. https://doi.org/10.1007/s00521-012-0999-x
  28. Keskin, R.S.O. and Arslan, G. (2013), "Predicting diagonal cracking strength of RC slender beams without stirrups using ANNs", Comput. Concrete, 12(5), 697-715. https://doi.org/10.12989/cac.2013.12.5.697
  29. Khuntia, M., Stojadinovic, B. and Goel, S.C. (1999), "Shear strength of normal and high-strength fiber reinforced concrete beams without stirrups", ACI Struct. J., 96(2), 282-289.
  30. Kwak, Y.K., Eberhard, M.O., Kim, W.S. and Kim, J. (2002), "Shear strength of steel fiber-reinforced concrete beams without stirrups", ACI Struct. J., 99(4), 530-538.
  31. Li, V.C., Ward, R. and Hamza, A.M. (1992), "Steel and synthetic fibers as shear reinforcement", ACI Mater. J., 89(5), 499-508.
  32. Lim, D.H. and Oh, B.H. (1999), "Experimental and theoretical investigation on the shear of steel fibre reinforced concrete beams", Eng. Struct., 21(10, 937-944. https://doi.org/10.1016/S0141-0296(98)00049-2
  33. Lim, T.Y., Paramasivam, P. and Lee, S.L. (1987), "Shear and moment capacity of reinforced steel-fiber-concrete beams", Mag. Concrete Res., 39(140), 148-160. https://doi.org/10.1680/macr.1987.39.140.148
  34. Mansur, M.A., Ong, K.C.G. and Paramasivam, P. (1986), "Shear strength of fibrous concrete beams without stirrups", ASCE J. Struct. Eng., 112(9), 2066-2079. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)
  35. Minelli, F. (2005), "Plain and fiber reinforced concrete beams under shear loading: structural behavior and design applications", Dissertation, Department of Civil Engineering, University of Brescia, Italy.
  36. Minelli, F. and Plizzari, G.A. (2013), "On the effectiveness of steel fibers as shear reinforcement", ACI Struct. J., 110(3), 379-390.
  37. Minelli, F., Conforti, A., Cuenca, E and Plizzari, G.A. (2014), "Are steel fibres able to mitigate or eliminate size effect in shear?", Mater. Struct., 47(3), 459-473. https://doi.org/10.1617/s11527-013-0072-y
  38. Naik, U. and Kute, S. (2013), "Span-to-depth ratio effect on shear strength of steel fiber-reinforced high-strength concrete deep beams using ANN model", Int. J. Adv. Struct. Eng., 5, 29. https://doi.org/10.1186/2008-6695-5-29
  39. Narayanan, R. and Darwish, I.Y.S. (1987), "Use of steel fibers as shear reinforcement", ACI Struct. J., 84(3), 216-227.
  40. Njomo, W.W. and Ozay, G. (2014), "Minimization of differential column shortening and sequential analysis of RC 3D-frames using ANN", Struct. Eng. Mech., 51(6), 989-1003. https://doi.org/10.12989/sem.2014.51.6.989
  41. Noghabai, K. (2000), "Beams of fibrous concrete in shear and bending: experiment and model", ASCE J. Struct. Eng., 126(2), 243-251. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(243)
  42. Parra-Montesinos, G.J. (2006), "Shear strength of beams with deformed steel fibers", Concrete Int., 28(11), 57-66.
  43. Parra-Montesinos, G.J., Wight, J.K., Dinh, H.H., Libbrecht, A. and Padilla, C. (2006), "Shear strength of fiber reinforced concrete beams without stirrups", Report No. UMCEE 06-04, University of Michigan, Ann Arbor, MI, USA.
  44. Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2010), "Neural networks for inelastic mid-span deflections in continuous composite beams", Struct. Eng. Mech., 36(2), 165-179. https://doi.org/10.12989/sem.2010.36.2.165
  45. RILEM TC 162-TDF (2003), "${\sigma}-{\varepsilon}$-design method", Mater. Struct., 36(8), 560-567. https://doi.org/10.1007/BF02480834
  46. Rosenbusch, J. and Teutsch, M. (2002), "Trial beams in shear, brite/euram project 97-4163", Final Report, Sub Task 4.2., Technical University of Braunschweig, Germany.
  47. Sharma, A.K. (1986), "Influence of steel fibers on the shear resistance of lightweight concrete I-beams", ACI J. Proc., 83(4), 624-628.
  48. Shoaib, A., Lubell, A.S. and Bindiganavile, V.S. (2014), "Size effect in shear for steel fiber-reinforced concrete members without stirrups", ACI Struct. J., 111(5), 1081-1090.
  49. Swamy, R.N., Jones, R. and Chiam, A.T.P. (1993), "Influence of steel fibers on the shear resistance of lightweight concrete I-beams", ACI Struct. J., 90(1), 103-114.
  50. Uomoto, T., Weeraratne, R.K., Furukoshi, H. and Fujino, H. (1986), "Shear strength of reinforced concrete beams with fiber reinforcement", Proceedings: Third International RILEM Symposium on Developments in Fiber Reinforced Cement and Concrete, Sheffield, England, July.
  51. Yakoub, H.E. (2011), "Shear stress prediction: steel fiberreinforced concrete beams without stirrups", ACI Struct. J., 108(3), 304-314.
  52. Zsutty, T. (1971), "Shear strength prediction for separate categories of simple beam tests", ACI J. Proc., 68(2), 138-143.

Cited by

  1. Influence of CFRP on the shear strength of RC and SFRC beams vol.153, 2017, https://doi.org/10.1016/j.conbuildmat.2017.06.170
  2. Influence of polypropylene fibres on the shear strength of RC beams with web reinforcement 2017, https://doi.org/10.1080/19648189.2017.1344151
  3. Bond strength prediction of steel bars in low strength concrete by using ANN vol.22, pp.2, 2018, https://doi.org/10.12989/cac.2018.22.2.249
  4. Shear strength of non-prismatic steel fiber reinforced concrete beams without stirrups vol.67, pp.4, 2017, https://doi.org/10.12989/sem.2018.67.4.347
  5. Shear strength of steel-fibre-reinforced concrete beams with web reinforcement vol.172, pp.4, 2017, https://doi.org/10.1680/jstbu.17.00115
  6. Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks vol.24, pp.5, 2019, https://doi.org/10.12989/cac.2019.24.5.469
  7. A stress field approach for the shear capacity of RC beams with stirrups vol.73, pp.5, 2017, https://doi.org/10.12989/sem.2020.73.5.515
  8. Shear strength prediction for SFRC and UHPC beams using a Bayesian approach vol.74, pp.4, 2017, https://doi.org/10.12989/sem.2020.74.4.503
  9. Shear behaviour of lightweight aggregate concrete beams using palm-oil by-products as coarse aggregate vol.79, pp.2, 2017, https://doi.org/10.12989/sem.2021.79.2.141
  10. Numerical evaluation of effects of shear span, stirrup spacing and angle of stirrup on reinforced concrete beam behaviour vol.79, pp.3, 2021, https://doi.org/10.12989/sem.2021.79.3.309
  11. An evolutionary approach for formulation of ultimate shear strength of steel fiber-reinforced concrete beams using gene expression programming vol.34, pp.None, 2017, https://doi.org/10.1016/j.istruc.2021.10.075