References
- ACI Committee 318 (2005), Building Code Requirements for Reinforced Concrete, (ACI 318-05) and Commentary (ACI 318R-05), American Concrete Institute, Detroit, MI.
- AlNuaimi, A.S., Al-Jabri, K.S. and Hago, A. (2008), "Comparison between solid and hollow reinforced concrete beams", Mater. Struct., 41(2), 269-286. https://doi.org/10.1617/s11527-007-9237-x
- Andrade, A.M., Bernardo, L.F.A. and Lopes, S.M.R. (2011), "TORQUE_MTEAV: computing tool to evaluate the ultimate behaviour of reinforced and prestressed concrete beams in torsion", Proceedings of the International Conference on Recent Advances in Nonlinear Models-Structural Concrete Aplications (CoRAN 2011), November, Coimbra, Portugal.
- Bairan Garcia, J.M. and Mari Bernat, A.R. (2006a), "Coupled model for the non-linear analysis of anisotropic sections subjected to general 3D loading. Part 1: Theoretical formulation", Comput. Struct., 84(31-32), 2254-2263. https://doi.org/10.1016/j.compstruc.2006.08.036
- Bairan Garcia, J.M. and Mari Bernat, A.R. (2006b), "Coupled model for the nonlinear analysis of sections made of anisotropic materials, subjected to general 3D loading. Part 2: Implementation and validation", Comput. Struct., 84(31-32), 2264-2276. https://doi.org/10.1016/j.compstruc.2006.08.035
- Belarbi, A. and Hsu T.C. (1994), "Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete", Struct. J. Am. Concrete Inst., 91(4), 465-474.
- Belarbi, A. and Hsu, T.C. (1991), "Constitutive laws of softened concrete in biaxial tension-compression", Research Report UHCEE 91-2, Univ. of Houston, Houston, Texas.
- Belarbi, A. and Hsu, T.C. (1995), "Constitutive laws of softened concrete in biaxial tension-compression", Struct. J. Am. Concrete Inst., 92(5), 562-573.
- Bernardo, L.F.A. and Lopes S.M.R. (2004), "Neutral axis depth versus flexural ductility in high-strength concrete beams", ASCE J. Struct. Eng., 130(3), 452-459. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(452)
- Bernardo, L.F.A. and Lopes, S.M.R. (2008), "Behaviour of concrete beams under torsion-NSC plain and hollow beams", Mater. Struct., 41(6), 1143-1167. https://doi.org/10.1617/s11527-007-9315-0
- Bernardo, L.F.A. and Lopes, S.M.R. (2009), "Torsion in HSC hollow beams: strength and ductility analysis", ACI Struct. J., 106(1), 39-48.
- Bernardo, L.F.A. and Lopes, S.M.R. (2011a), "Theoretical behaviour of HSC sections under torsion", Eng. Struct., 33(12), 3702-3714. https://doi.org/10.1016/j.engstruct.2011.08.007
- Bernardo, L.F.A. and Lopes, S.M.R. (2011b), "High-strength concrete hollow beams strengthened with external transversal steel reinforcement under torsion", J. Civil Eng. Manage., 17(3), 330-339. https://doi.org/10.3846/13923730.2011.589204
- Bernardo, L.F.A. and Lopes, S.M.R. (2013), "Plastic analysis and twist capacity of high-strength concrete hollow beams under pure torsion", Eng. Struct., 49, 190-201. https://doi.org/10.1016/j.engstruct.2012.10.030
- Bernardo, L.F.A., Andrade, J.M.A. and Lopes, S.M.R. (2012a), "Softened truss model for reinforced NSC and HSC beams under torsion: a comparative study", Eng. Struct., 42(12), 278-296. https://doi.org/10.1016/j.engstruct.2012.04.036
- Bernardo, L.F.A., Andrade, J.M.A. and Lopes, S.M.R. (2012b), "Modified variable angle truss-model for torsion in reinforced concrete beams", Mater. Struct., 45(12), 1877-1902. https://doi.org/10.1617/s11527-012-9876-4
- Bernardo, L.F.A., Taborda, C.S.B. and Andrade, J.M.A. (2015a) "Ultimate torsional behaviour of axially restrained RC beams", Comput. Concrete, 16(1), 67-97. https://doi.org/10.12989/cac.2015.16.1.067
- Bernardo, L.F.B., Taborda, C.S.B. and Gama, J.M.R. (2015b) "Parametric analysis and torsion design charts for axially restrained RC beams", Struct. Eng. Mech., 55(1), 1-27. https://doi.org/10.12989/sem.2015.55.1.001
- Collins, M.P. and Poraz, A. (1989), "Shear design for high strength concrete", Bulletin d'Information No. 193-Design Aspects of High Strength Concrete, CEB, 75-83.
- Comite Euro-International du Beton (CEB) (1990), CEB-FIP MODEL CODE 1990.
- Hognestad, E. (1952), "What do we know about diagonal tension and web reinforcement in concrete?", Circular Series, 64, University of Illinois, Engineering Exp. Station, III.
- Hsu, T.T.C. (1984), Torsion of Reinforced Concrete, Van Nostrand Reinhold Company.
- Hsu, T.T.C. (1993), Unified Theory of Reinforced Concrete, CRC Press, Inc., Boca Raton.
- Hsu, T.T.C. and Mo, Y.L. (1985), "Softening of concrete in torsional members-prestressed concrete", ACI J. Pr., 82(5), 603-615.
- Jeng, C.H. and Hsu, T.T.C. (2009), "A softened membrane model for torsion in reinforced concrete members", Eng. Struct., 31(9), 1944-54. https://doi.org/10.1016/j.engstruct.2009.02.038
- Jeng, C.H., Chiu, H.J. and Chen, C.S. (2010), "Modeling the initial stresses in prestressed concrete members under torsion", 2010 Structures Congress, ASCE, 1773-1781.
- Jeng, C.H., Chiu, H.J. and Peng, S.F. (2013), "Design formulas for cracking torque and twist in hollow reinforced concrete members", ACI Struct. J., 110(3), 457-468.
- Jeng, C.H., Peng, X. and Wong, Y.L. (2011), "Strain gradient effect in RC elements subjected to torsion", Mag. Concrete Res., 63(5), 343-356. https://doi.org/10.1680/macr.9.00218
- Lopes, S.M.R. and Bernardo, L.F.A. (2009), "Twist behavior of high-strength concrete hollow beams-formation of plastic hinges along the length", Eng. Struct., 31(1), 138-149. https://doi.org/10.1016/j.engstruct.2008.08.003
- Lopes, S.M.R., Bernardo, L.F.A. and Costa, R.J.T. (2015a), "Reinforced concrete membranes under shear: global behaviour", Exp. Techniq., 39, 30-43.
- Lopes, S.M.R., Bernardo, L.F.A. and Costa, R.J.T. (2015b), "Reinforced concrete membranes under shear: ultimate behaviour and influence of thickness", Exp. Techniq., 39, 44-56. https://doi.org/10.1111/j.1747-1567.2012.00874.x
- McMullen, A.E. and El-Degwy, W.M. (1985), "Prestressed concrete tests compared with torsion theories", PCI J., 30(5), 96-127. https://doi.org/10.15554/pcij.09011985.96.127
- Mikame, A., Uchida, K. and Noguchi, H. (1991), "A study of compressive deterioration of cracked concrete", Proceedings of the International Workshop on Finite Element Analysis of Reinforced Concrete, Columbia University, New York, N.Y.
- Mitchell, D. and Collins, M.P. (1974), "The behavior of structural concrete beams in pure torsion", Civil Engineering Publication No.74-06, Department of civil Engineering, University of Toronto, March.
- Miyahara, T., Kawakami, T. and Maekawa, K. (1988), "Nonlinear behavior of cracked reinforced concrete plate element under uniaxial compression", Concrete Lib. Int. JPN Soc. Civil Eng., 11, 306-319.
- Mostofinejad, D. and Behzad, T.S. (2011), "Nonlinear modeling of RC beams subjected to torsion using smeared crack model", The Twelfth East Asia-Pasific Conference on Structural Engineering and Construction (EASEC-12), Hong Kong SAR, China, January.
- Navarro Gregori, J., Sosa, P.M., Prada, M.A.F. and Filippou, F.C. (2007), "A 3D numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading", Eng. Struct., 29(12), 3404-3419. https://doi.org/10.1016/j.engstruct.2007.09.001
- NP EN 1992-1-1 (2010), Eurocode 2: Design of Concrete Structures - Part 1: General Rules and Rules for Buildings.
- Rahal, K.N. and Collins, M.P. (1996), "Simple model for predicting torsional strength of reinforced and prestressed concrete sections", ACI Struct. J., 93(6), 658-666.
- Ueda, M., Noguchi, H., Shirai, N. and Morita, S. (1991), "Introduction to activity of new RC", Proceedings of the International Workshop on Finite Element Analysis of Reinf. Concrete, Columbia Univ., New York, N.Y.
- Valipour, H.R. and Foster, S.J. (2010), "Nonlinear analysis of 3D reinforced concrete frames: effect of section torsion on the global response", Struct. Eng. Mech., 36(4), 421-445. https://doi.org/10.12989/sem.2010.36.4.421
- Vecchio, F.J. (2000a), "Disturbed stress field model for reinforced concrete: formulation", J. Struct. Eng., 126(9), 1070-1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070)
- Vecchio, F.J. (2000b), "Analysis of shear-critical reinforced concrete beams", Struct. J. Am. Concrete Inst., 97(1), 102-110.
- Vecchio, F.J. and Collins, M.P. (1982), "The response of reinforced concrete to in-plane shear and normal stresses", Publication No. 82-03, Department of Civil Engineering, University of Toronto, Toronto, Canada.
- Vecchio, F.J. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", J. Am. Concrete Inst., 83(2), 219-231.
- Vecchio, F.J., Collins, M.P. and Aspiotis, J. (1994), "High-strength concrete elements subjected to shear", Struct. J. Am. Concrete Inst., 91(4), 423-433.
- Wafa, F.F., Shihata, S.A., Ashour, S.A. and Akhtaruzzaman, A.A. (1995), "Prestressed high-strength concrete beams under torsion", J. Struct. Eng., 121(9), 1280-1286. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:9(1280)
- Zhang, L.X. and Hsu, T.T.C. (1998), "Behaviour and analysis of 100 MPa concrete membrane elements", J. Struct. Eng., ASCE, 124(1), 24-34. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:1(24)
- Zhu, R.R.H., Hsu, T.T.C. and Lee, J.Y. (2001), "Rational shear modulus for smeared-crack analysis of reinforced concrete", Struct. J. Am. Concrete Inst., 98(4), 443-450.
Cited by
- Generalized Softened Variable Angle Truss Model for PC Beams under Torsion vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0285-0
- Efficient refined rotating-angle softened truss model procedure to analyze reinforced concrete membrane elements pp.14644177, 2018, https://doi.org/10.1002/suco.201800012