참고문헌
- Alizade, A.A., Mirdamadi, H.R. and Pishevar, A. (2016), "Reliability analysis of pipe conveying fluid with stochastic structural and fluid parameters", Eng. Struct., 122, 24-32. https://doi.org/10.1016/j.engstruct.2016.04.052
- Amabili, M. (2008), "Nonlinear Vibrations and Stability of Shells and Plates", CAMBRIDGE UNIVERSITY PRESS.
- Amabili, M., Karagiozis, K. and Paidoussis, M.P. (2009), "Effect of geometric imperfections on non-linear stability of circular cylindrical shells conveying fluid", Int. J. Nonlinear. Mech., 44(3), 276- 289. https://doi.org/10.1016/j.ijnonlinmec.2008.11.006
- Amabili, M., Pellicano, F. and Paidoussis, M.P. (2002), "Non-linear dynamics and stability of circular cylindrical shells conveying flowing fluid", Comput. Struct., 80(9-10), 899-906,. https://doi.org/10.1016/S0045-7949(02)00055-X
- Firouz-Abadi, R.D., Noorian, M.A. and Haddadpour, H. (2010), "A fluid-structure interaction model for stability analysis of shells conveying fluid", J. Fluid. Struct., 26(5), 747-763. https://doi.org/10.1016/j.jfluidstructs.2010.04.003
- He, T. (2015), "Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes", Wind Struct., 20(3), 423-448. https://doi.org/10.12989/was.2015.20.3.423
- Hu, K., Wang, Y.K., Dai, H.L., Wang, L. and Qian, Q. (2016), "Nonlinear and chaotic vibrations of cantilevered micropipes conveying fluid based on modified couple stress theory", Int. J. Eng. Sci., 105, 93-107. https://doi.org/10.1016/j.ijengsci.2016.04.014
- Jafari Mehrabadi, S. and Sobhani Aragh, B. (2014), "Stress analysis of functionally graded open cylindrical shell reinforced by agglomerated carbon nanotubes", Thin. Wall. Struct., 80, 130-141. https://doi.org/10.1016/j.tws.2014.02.016
- Khalili, S.M.R., Davar, A. and Malekzadeh Fard, K. (2012), "Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory", Int. J. Mech. Sci., 56(1), 1-25. https://doi.org/10.1016/j.ijmecsci.2011.11.002
- Kolahchi, R., Rabani Bidgoli, M., Beygipoor, Gh. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", Int. J. Mech. Sci., 29(9), 3669-3677.
- Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
- Kutlu, A. and Omurtag, M.H. (2012), "Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method", Int. J. Mech. Sci., 65(1), 64-74. https://doi.org/10.1016/j.ijmecsci.2012.09.004
- Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbonnanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
- Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Meth. Appl. Mech. Eng., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001
- Morgenthal, G. and McRobie, A. (2002), "A comparative study of numerical methods for fluid structure interaction analysis in long-span bridge design", Wind Struct., 5(2), 101-114. https://doi.org/10.12989/was.2002.5.2_3_4.101
- Nascimbene, R. (2013), "Analysis and optimal design of fiber-reinforced composite structures: sail against the wind", Wind Struct., 16(6), 541-560. https://doi.org/10.12989/was.2013.16.6.541
- Park, K.J. and Kim, Y.W. (2016), "Vibration characteristics of fluid-conveying FGM cylindrical shells resting on Pasternak elastic foundation with an oblique edge", Thin. Wall. Struct., 106, 407-419. https://doi.org/10.1016/j.tws.2016.05.011
- Senthil Kumar, D. and Ganesan, N. (2008), "Dynamic analysis of conical shells conveying fluid", J. Sound Vib., 310(1-2), 38-57. https://doi.org/10.1016/j.jsv.2007.07.020
- Shu, C. and Du, H. (1997), "Free vibration analysis of laminated composite cylindrical shells by DQM", Compos. Part B: Eng., 28(3), 267-274. https://doi.org/10.1016/S1359-8368(96)00052-2
- Thomas, B. and Roy, T. (2016), "Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures", Acta Mech., 227(2), 581-599. https://doi.org/10.1007/s00707-015-1479-z
- Wang, L. and Ni, Q. (2009), "A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid", Mech. Res. Commun., 36(7), 833-837. https://doi.org/10.1016/j.mechrescom.2009.05.003
- Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014a), "Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels", Comput. Method. Appl. M., 273, 1-18,. https://doi.org/10.1016/j.cma.2014.01.024
- Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014b), "Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels", Compos. Struct., 111, 205-212. https://doi.org/10.1016/j.compstruct.2013.12.035
피인용 문헌
- Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution vol.25, pp.4, 2017, https://doi.org/10.12989/was.2017.25.4.381
- A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.771
- Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects vol.68, pp.3, 2018, https://doi.org/10.12989/sem.2018.68.3.359
- Dynamic analysis of laminated nanocomposite pipes under the effect of turbulent in viscoelastic medium vol.30, pp.2, 2017, https://doi.org/10.12989/was.2020.30.2.133
- Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles vol.9, pp.3, 2017, https://doi.org/10.12989/csm.2020.9.3.281
- High-Accuracy Approach for Thermomechanical Vibration Analysis of FG-Gplrc Fluid-Conveying Viscoelastic Thick Cylindrical Shell vol.12, pp.7, 2017, https://doi.org/10.1142/s1758825120500738