DOI QR코드

DOI QR Code

Frequency and critical fluid velocity analysis of pipes reinforced with FG-CNTs conveying internal flows

  • Ghaitani, M. (Department of Mechanical Engineering, Islamic Azad University) ;
  • Majidian, A. (Department of Mechanical Engineering, Islamic Azad University)
  • Received : 2016.11.18
  • Accepted : 2017.01.03
  • Published : 2017.03.25

Abstract

This paper addresses vibration and instability of embedded functionally graded (FG)-carbon nanotubes (CNTs)-reinforced pipes conveying viscous fluid. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Flugge shell model is applied for mathematical modeling of structure. Based on energy method and Hamilton's principal, the motion equations are derived. Differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as volume percent of CNTs, elastic medium, boundary condition and geometrical parameters are discussed.

Keywords

References

  1. Alizade, A.A., Mirdamadi, H.R. and Pishevar, A. (2016), "Reliability analysis of pipe conveying fluid with stochastic structural and fluid parameters", Eng. Struct., 122, 24-32. https://doi.org/10.1016/j.engstruct.2016.04.052
  2. Amabili, M. (2008), "Nonlinear Vibrations and Stability of Shells and Plates", CAMBRIDGE UNIVERSITY PRESS.
  3. Amabili, M., Karagiozis, K. and Paidoussis, M.P. (2009), "Effect of geometric imperfections on non-linear stability of circular cylindrical shells conveying fluid", Int. J. Nonlinear. Mech., 44(3), 276- 289. https://doi.org/10.1016/j.ijnonlinmec.2008.11.006
  4. Amabili, M., Pellicano, F. and Paidoussis, M.P. (2002), "Non-linear dynamics and stability of circular cylindrical shells conveying flowing fluid", Comput. Struct., 80(9-10), 899-906,. https://doi.org/10.1016/S0045-7949(02)00055-X
  5. Firouz-Abadi, R.D., Noorian, M.A. and Haddadpour, H. (2010), "A fluid-structure interaction model for stability analysis of shells conveying fluid", J. Fluid. Struct., 26(5), 747-763. https://doi.org/10.1016/j.jfluidstructs.2010.04.003
  6. He, T. (2015), "Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes", Wind Struct., 20(3), 423-448. https://doi.org/10.12989/was.2015.20.3.423
  7. Hu, K., Wang, Y.K., Dai, H.L., Wang, L. and Qian, Q. (2016), "Nonlinear and chaotic vibrations of cantilevered micropipes conveying fluid based on modified couple stress theory", Int. J. Eng. Sci., 105, 93-107. https://doi.org/10.1016/j.ijengsci.2016.04.014
  8. Jafari Mehrabadi, S. and Sobhani Aragh, B. (2014), "Stress analysis of functionally graded open cylindrical shell reinforced by agglomerated carbon nanotubes", Thin. Wall. Struct., 80, 130-141. https://doi.org/10.1016/j.tws.2014.02.016
  9. Khalili, S.M.R., Davar, A. and Malekzadeh Fard, K. (2012), "Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory", Int. J. Mech. Sci., 56(1), 1-25. https://doi.org/10.1016/j.ijmecsci.2011.11.002
  10. Kolahchi, R., Rabani Bidgoli, M., Beygipoor, Gh. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", Int. J. Mech. Sci., 29(9), 3669-3677.
  11. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  12. Kutlu, A. and Omurtag, M.H. (2012), "Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method", Int. J. Mech. Sci., 65(1), 64-74. https://doi.org/10.1016/j.ijmecsci.2012.09.004
  13. Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbonnanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
  14. Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Meth. Appl. Mech. Eng., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001
  15. Morgenthal, G. and McRobie, A. (2002), "A comparative study of numerical methods for fluid structure interaction analysis in long-span bridge design", Wind Struct., 5(2), 101-114. https://doi.org/10.12989/was.2002.5.2_3_4.101
  16. Nascimbene, R. (2013), "Analysis and optimal design of fiber-reinforced composite structures: sail against the wind", Wind Struct., 16(6), 541-560. https://doi.org/10.12989/was.2013.16.6.541
  17. Park, K.J. and Kim, Y.W. (2016), "Vibration characteristics of fluid-conveying FGM cylindrical shells resting on Pasternak elastic foundation with an oblique edge", Thin. Wall. Struct., 106, 407-419. https://doi.org/10.1016/j.tws.2016.05.011
  18. Senthil Kumar, D. and Ganesan, N. (2008), "Dynamic analysis of conical shells conveying fluid", J. Sound Vib., 310(1-2), 38-57. https://doi.org/10.1016/j.jsv.2007.07.020
  19. Shu, C. and Du, H. (1997), "Free vibration analysis of laminated composite cylindrical shells by DQM", Compos. Part B: Eng., 28(3), 267-274. https://doi.org/10.1016/S1359-8368(96)00052-2
  20. Thomas, B. and Roy, T. (2016), "Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures", Acta Mech., 227(2), 581-599. https://doi.org/10.1007/s00707-015-1479-z
  21. Wang, L. and Ni, Q. (2009), "A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid", Mech. Res. Commun., 36(7), 833-837. https://doi.org/10.1016/j.mechrescom.2009.05.003
  22. Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014a), "Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels", Comput. Method. Appl. M., 273, 1-18,. https://doi.org/10.1016/j.cma.2014.01.024
  23. Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014b), "Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels", Compos. Struct., 111, 205-212. https://doi.org/10.1016/j.compstruct.2013.12.035

Cited by

  1. Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution vol.25, pp.4, 2017, https://doi.org/10.12989/was.2017.25.4.381
  2. A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.771
  3. Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects vol.68, pp.3, 2018, https://doi.org/10.12989/sem.2018.68.3.359
  4. Dynamic analysis of laminated nanocomposite pipes under the effect of turbulent in viscoelastic medium vol.30, pp.2, 2017, https://doi.org/10.12989/was.2020.30.2.133
  5. Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles vol.9, pp.3, 2017, https://doi.org/10.12989/csm.2020.9.3.281
  6. High-Accuracy Approach for Thermomechanical Vibration Analysis of FG-Gplrc Fluid-Conveying Viscoelastic Thick Cylindrical Shell vol.12, pp.7, 2017, https://doi.org/10.1142/s1758825120500738