DOI QR코드

DOI QR Code

Paramagnetic Zn(1-x)MnxO (0.00≤x≤0.06) Nanoparticles Prepared by The Coprecipitation Method

  • Harsono, Heru (Department of Mechanical Engineering, Faculty of Engineering and Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya) ;
  • Wardana, I Nyoman Gede (Department of Mechanical Engineering, Faculty of Engineering, Universitas Brawijaya) ;
  • Sonief, Achmad As'ad (Department of Mechanical Engineering, Faculty of Engineering, Universitas Brawijaya) ;
  • Darminto, Darminto (Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember)
  • Received : 2015.11.20
  • Accepted : 2016.11.01
  • Published : 2017.02.25

Abstract

The Zn1-xMnxO ($0.00{\leq}x{\leq}0.06$) samples have been synthesized in the form of powder by the coprecipitation method at low temperature using $Zn(CH_3COO)_2$. $2H_2O$ and $Mn(CH_3COO)_2$. $4H_2O$ powders, as well as HCl and $NH_4OH$ solutions as starting materials. Characterization was conducted using XRD, TEM, XRF, FTIR and VSM. The result shows that the $Zn_{(1-x)}Mn_xO$ ($0.00{\leq}x{\leq}0.06$) nanoparticles have the wurtzite phase with a hexagonal structure and particle sizes ranging from 17.48 to 118.83 nm. In a qualitative analysis of XRF, the peaks that confirm the existence of the manganese element in Mn-doped ZnO samples were observed. Meanwhile, FTIR test result shows that there are peaks at around $500cm^{-1}$ and $400cm^{-1}$ in the FTIR spectra for Mn doped ZnO samples which clearly reveal the existence of the (Zn, Mn)-O strain mode. The (Zn, Mn)-O absorption peak positions have shifted to a lower wave number with increasing Mn doping content. The peak intensity is also lower if compared to that of the ZnO sample without doping. From the VSM test, it is shown that $Zn_{(1-x)}Mn_xO$ ($0.00{\leq}x{\leq}0.06$) nanoparticles are all paramagnetic having monotonically increased susceptibility as increasing Mn content.

Keywords

References

  1. S. P. Gubin, Y. A. Koksharov, G. B. Khomutov, and G. Y. Yurkov, Russian Chemical Reviews, 74, 489 (2005). https://doi.org/10.1070/RC2005v074n06ABEH000897
  2. A. Wu, P. Ou, and L. Zeng, Nano, 5, 245 (2010). [DOI: https://doi.org/10.1142/S1793292010002165]
  3. C. Ronning, P. X. Gao, Y. Ding, and L. Wang., Appl. Phys. Lett., 84, 783 (2004). https://doi.org/10.1063/1.1645319
  4. X. Luo, W. T. Lee, G. Xing, N. Bao, A. Yonis, D. Chu, J. Lee, J. Ding, S. Li, and J. Yi, Nanoscale Res. Lett., 9, 1 (2014). https://doi.org/10.1186/1556-276X-9-1
  5. L. Luo, Y. Zhang, S. S. Mao, and L. Lin, Sens. Actuators A., 127, 201 (2006). https://doi.org/10.1016/j.sna.2005.06.023
  6. S. D. Puckett, E. Taylor, T. Raimondo, and T. J. Webster, Biomaterials, 31, 706 (2010). [DOI: https://doi.org/10.1016/j.biomaterials.2009.09.081].
  7. J. E. Ghoula, C. Barthoub, and L. E. Mir, Physica E : Lowdimensional Systems and Nanostructures, 44, 1910 (2012). [DOI: https://doi.org/10.1016/j.physe.2012.05.020]
  8. A. K. Zak, W.H.A. Madjid, M. E. Abrishami, R. Yousefi, and R. Parvizi, Solid State Science, 14, 488 (2012). [DOI: https://doi.org/10.1016/j.solidstatesciences.2012.01.019]
  9. P. S. D'Agostino, Ph. D., Universita degli Studi di Modena e Reggio Emilia, Italy (2009).
  10. Y. M. Hao, S. Y. Luo, S. M. Zhou, R. J. Hao, G. Y. Zhu, and N. Li, Nanoscale Res. Lett., 7, 1 (2012). [DOI: https://doi.org/10.1186/1556-276X-7-100]
  11. M. E. Abrishami, S. M. Hosseini, E. A. Kakhki, A. Kompany, and M. Ghasemifard, International Journal of Nanoscience, 9, 19 (2010). [DOI: https://doi.org/10.1142/S0219581Xl000648X]
  12. D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, Journal of the American Chemical Society, 9, 13205 (2003). [DOI: https://doi.org/10.102/ja036811v]
  13. L. Zhifeng, L. Chengcheng, Y. Jiang, and E. Lei, Solid State Sciences, 12, 111 (2010). [DOI: https://doi.org/10.1016/j.solidstatesciences.2009.10.014]
  14. V. R. Shinde, T. P.Gujar, C. D. Lokhande, R. S. Mane, and S. H. Han, Mater. Chem. Phys., 96, 326 (2006). [DOI: https://doi.org/10.1016/j.matchemphys.2005.07.045]
  15. A. C. Tuan, J. D. Bryan, A. B. Pakhomov, V. Shutthanandan, S. Thevuthasan, D. E. McCready, D. Gaspar, M. H. Engelhard, J. W. Rogers Jr., K. Krishnan, D. R. Gamelin, and S. A. Chambers, Phys. Rev. B, 70, 054424 (2004). [DOI: https://doi.org/10.1103/PhysRevB.70.054424]
  16. A. Atsushi, N. Takahiro, and F. Norifumi, J. Appl. Phys., 99, 013509 (2006). [DOI: https://doi.org/10.1063/1.2150596]
  17. A. Tiwaria, C. Jina, A. Kvita, D. Kumar, J. F. Muth, and J. Narayana, Solid State Communications, 121, 371 (2002). [DOI: https://doi.org/10.1016/S0038-1098(01)00464-1]
  18. K. Ando, H. Saito, Z. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, and H. Koinuma, J. Appl. Phys., 89, 7284 (2001). [DOI: https://doi.org/10.1063/1.1356035]
  19. T. Fukumura, Z. W. Zin, A. Ohtomo, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett., 75, 3366 (1999). [DOI: https://doi.org/10.1063/1.125353]
  20. M. A. Shafique, S. A. Shah, M. Nafees, K. Rasheed, and R. Ahmad, International Nano Lett., 2, 1 (2012). [DOI: https://doi.org/www.inl-journal.com/content/2/1/31] https://doi.org/10.1186/2228-5326-2-1
  21. S. Bagheri, K. G. Chandrappa, and S.B.A. Hamid, Der Pharma Chemica, 5, 265 (2013). [DOI: https://doi.org/derpharmachemica.com/ archive.html]
  22. T. L. Tan, C. W. Lasi, W. L. Chin, and S.B.A. Hamed, J. Nanomater., 2014, 1 (2014). [DOI: https://doi.org/10.1155/2014/371720]
  23. F. Chekin, S. Bagheri, and S. B. A. Hamid, Analytical Methods, 4, 2423 (2012). [DOI: https://doi.org/10.1039/C2AY25251A]
  24. S. W. Jung, S. J. An, G. C. Yi, C. U. Jung, S. I. Lee, and S. Cho, Appl. Phys. Lett., 80, 4561 (2002). https://doi.org/10.1063/1.1487927
  25. L. B. Duan, G. H. Rao, J. Yu, Y. C. Wang, W. G. Chu, and L. N. Zhang, J. Appl. Phys., 102, 103907 (2007). https://doi.org/10.1063/1.2815647
  26. J. Elanchezhiyan, P. Bhuvana, N. V. Gopalakrishnan, A. Thamizhavel, and T. Balasubramanian, Z. Naturforsch, 63a, 585 (2008).
  27. X. M.Cheng and C. L. Chien, J. Appl. Phys., 93, 7876 (2003). https://doi.org/10.1063/1.1556125
  28. B. A. Hunter, Rietica - A visual Rietveld program, 20, 21 (1998).
  29. R. K. Sharma, P. Sandeep, and K, C. Pargaien, Adv. Nat. Sci.: Nanosci. Nanotechnol., 3, 1 (2012).
  30. J. Anghel, A. Thurber, D. A. Tenne, C. B. Hanna, and A. Punnoose, J. Appl. Phys., 107, 09E314 (2010). https://doi.org/10.1063/1.3360189
  31. M. E. Abrishami, S. M. Hosseini, E. A. Kakhki, A. Kompany, and M. Ghasemifard, International Journal of Nanoscience, 9, 19 (2010). [DOI: https://doi.org/10.1142/S0219581X1000648X]
  32. B. N. Dole, V. D. Mote, V. R. Huse, Y. Purushotham, M. K. Lande, K. M. Jadhav, and S. S. Shah, Current Appl. Phys., 11, 762 (2011). [DOI: https://doi.org/www.elsevier.com/locate/cap] https://doi.org/10.1016/j.cap.2010.11.050
  33. N. F. Djaja and R. Saleh, Mater. Sci. Appl., 3, 245 (2012). [DOI: https://doi.org/10.4236/msa.2012.34036]