DOI QR코드

DOI QR Code

RF-MEMS-Based DPDT Switch on Silicon Substrate for Ku-Band Space-Borne Applications

  • Singh, Harsimran (Department of Electronics & Communication Engineering, Guru Nanak Dev University-Regional Campus) ;
  • Malhotra, Jyoteesh (Department of Electronics & Communication Engineering, Guru Nanak Dev University-Regional Campus)
  • Received : 2016.06.30
  • Accepted : 2016.11.03
  • Published : 2017.02.25

Abstract

A RF-MEMS (radio-frequency microelectromechanical-system) based DPDT (double pole double throw) switch for the Ku band has been designed and analyzed for this article. The switch topology is based on the FG-CPW (finite ground-coplanar waveguide) configuration of a microstrip-transmission line. An FEM-based multiphysics solver is used for the evaluation of the spring constant, stress distribution, and pull-in voltage regarding the requirements of the switch-beam unit. The electromagnetic performance of the switch is investigated for a $675{\mu}m$ thick silicon substrate. For the operational frequency of 14.5 GHz, an insertion loss better than -0.3 dB, a return loss better than -40 dB, and input/output- and output-port isolations better than -35 dB are achieved for the switching unit.

Keywords

References

  1. G. M. Rebeiz, RF MEMS: Theory, Design and Techniques (1st ed.) (Wiley Inter science, New York, 2003).
  2. R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook (Boston, Artech House, 2003).
  3. C. Luxey, L. Dussopt, J.L.L. Sonn, and J. M. Laheurte, Electron. Lett., 36, 2, (2000). [DOI: http://dx.doi.org/10.1049/el:20000119]
  4. M. Maddela , R. Ramadoss, and R. Lempkowski, Proc. ISIE, (Vigo, Spain, 2007) p. 3255. [DOI: http://dx.doi.org/10.1109/ISIE.2007.4375136]
  5. L. Vietzorreck and T. Kim, Proc. 2013 11th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS) (Nis, Serbia, 2013). [DOI: http://dx.doi.org/10.1109/TELSKS.2013.6704399]
  6. S. P. Pacheco and L.P.B. Katehi, RF Technologies for Low Power Wireless Communications (2002) p. 349.
  7. M. Daneshmand, A. A. Fomani, M. M. Fahmi, J.A.R. Cruz, and R. R. Mansour, Proc. IEEE MTT-S International Microwave Symposium Digest (Montreal, Canada, 2012) p. 1.
  8. A. D. Angelis, E. Lucibello, R. Proietti, R. Marcelli, G. Bartolucci, F. Casini, P. Farinelli, G. Mannocchi, S. D. Nardo, D. Pochesci, B. Margesin, F. Giacomozzi, O. Vendier, T. Kim, and L. Vietzorreck, International Journal of Microwave and Wireless Technologies, 4, 421 (2012). [DOI: http://dx.doi.org/10.1017/S1759078712000074]
  9. T. Kim, L. Vietzorreck, P. Farinelli, B. Margesin, R. Marcelli, D. Pochesci, E. D. Paola, F. Vitulli, and S. D. Nardo, Adv. Radio Sci., 11, 143 (2013). [DOI: http://dx.doi.org/10.5194/ars-11-143-2013]
  10. E. Erdil, K. Topalli, M. Unlu, O. A. Civi, and T. Akin, IEEE transactions on antennas and propagation, 55, 1193 (2007). [DOI: http://dx.doi.org/10.1109/TAP.2007.893426]
  11. S. Lucyszyn, Advanced RF MEMS (1st ed.) (Cambridge University Press, UK, 2010).
  12. S. K. Koul and S. Dey, J. ISSS, 2, 27 (2013).
  13. W. Auer, E Hettlage, and G. Ruff, Proc. the 3rd European Space Mechanisms & Tribology Symposium (Madrid, Spain, 1987).
  14. G. E. Ponchak, L. P. Katehi, and E. M. Tentzeris, Ann Arbor, 1001, 48109 (1998).
  15. J. Taeksoo, H. Yoon, J. K. Abraham, and V. K. Varadan, IEEE Transactions on Microwave Theory and Techniques, 54, 1131 (2006). [DOI: http://dx.doi.org/10.1109/TMTT.2006.869721]
  16. H. Singh, A. Karmakar, and K. Singh, 1st International Science &Technology Congress (Elsevier Science and Technology, 2014) p. 150.