References
- Barseghyan, M.G., Kirakosyan, A.A. and Duque, C.A. (2009), "Donor-impurity related binding energy and photoinization cross-section in quantum dots: electric and magnetic fields and hydrostatic pressure effects", Euro. Phys. J. B, 72(4), 521-529. https://doi.org/10.1140/epjb/e2009-00391-0
- Baskoutas, S., Paspalakis, E. and Terzis, A.F. (2007), "Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field", J. Phys.: Cond. Matt., 19(39), 395024. https://doi.org/10.1088/0953-8984/19/39/395024
- Bera, A., Ganguly, J., Saha, S. and Ghosh, M. (2016), "Interplay between noise and position dependent dielectric screening function in modulating nonlinear optical properties of impurity doped quantum dots", Optik, 127(16), 6771-6778. https://doi.org/10.1016/j.ijleo.2016.04.023
- Cakir, B., Yakar, Y., Ozmen, A., Ozgur Sezer, M. and Sahin, M. (2010), "Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot", Superlattices Microst., 47(4), 556-566. https://doi.org/10.1016/j.spmi.2009.12.002
- Cakir, B., Yakar, Y. and Ozmen, A. (2012), "Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential", J. Lumin., 132(10), 2659-2664. https://doi.org/10.1016/j.jlumin.2012.03.065
- Chen, T. and Xie, W. (2012), "Nonlinear optical properties of a three-dimensional anisotropic quantum dot", Solid State Commun., 152(4), 314-319. https://doi.org/10.1016/j.ssc.2011.11.020
-
Deng, Z.-Y., Guo, J.-K. and Lai, T.-R. (1994), "Impurity states in a spherical GaAs.
$Ga_{1-x}Al_x$ As quantum dot: Effects of the spatial variation of dielectric screening", Phys. Rev. B, 50(8), 5736-5739. https://doi.org/10.1103/PhysRevB.50.5736 - Duque, C.A., Porras-Montenegro, N., Barticevic, Z., Pacheco, M. and Oliveira, L.E. (2005),"Electron-hole transitions in self-assembled InAs/GaAs quantum dots: Effects of applied magnetic fields and hydrostatic pressure", Microelectronics J., 36(3), 231-233. https://doi.org/10.1016/j.mejo.2005.04.001
- Duque, C.A., Porras-Montenegro, N., Pacheco, M. and Oliveira, L.E. (2006), "Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots", J. Phys.: Cond. Matt., 18(6), 1877. https://doi.org/10.1088/0953-8984/18/6/005
- Duque, C.A., Mora-Ramos, M.E., Kasapoglu, E., Ungan, F., Yesilgul, U., Sakiroglu, S., Sari, H. and Sӧkmen, I. (2013), "Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section", J. Lumin., 143, 304-313. https://doi.org/10.1016/j.jlumin.2013.04.048
- Ghosh, A.P., Mandal, A., Sarkar, S. and Ghosh, M. (2016), "Influence of position-dependent effective mass on the nonlinear optical properties of impurity doped Quantum dots in presence of Gaussian white noise", Optics Commun., 367, 325-334. https://doi.org/10.1016/j.optcom.2016.01.062
- Gulveren, B., Atav, U., Sahin, M. and Tomak, M. (2005), "A parabolic quantum dot with N electrons and an impurity", Physica E, 30(1-2), 143-149. https://doi.org/10.1016/j.physe.2005.08.007
- Jayam, Sr.G. and Navaneethakrishnan, K. (2003), "Effects of electric field and hydrostatic pressure on donor binding energies in a spherical quantum dot", Solid State Commun., 126(12), 681-685. https://doi.org/10.1016/S0038-1098(03)00209-6
- Karabulut, İ. and Baskoutas, S. (2008), "Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity", J. Appl. Phys., 103(7), 073512. https://doi.org/10.1063/1.2904860
- Karabulut, I. and Baskoutas, S. (2009), "Second and third harmonic generation susceptibilities of spherical quantum dots: Effects of impurities, electric field and size", J. Comput. Theor. Nanosci., 6(1), 153-156. https://doi.org/10.1166/jctn.2009.1020
- Karabulut, İ., Atav, Ü., Sąfak, H. and Tomak, M. (2007), "Linear and nonlinear intersubb and optical absorptions in an asymmetric rectangular quantum well", Eur. Phys. J. B, 55(3), 283-288. https://doi.org/10.1140/epjb/e2007-00055-1
- Kasapoglu, E., Ungan, F., Sari, H., Sӧ kmen, I., Mora-Ramos, M.E. and Duque, C.A. (2014), "Donor impurity states and related optical responses in triangular quantum dots under applied electric field", Superlattices Microst., 73, 171-184. https://doi.org/10.1016/j.spmi.2014.05.023
- Khordad, R. (2010), "Effects of position-dependent effective mass of a hydrogenic donor impurity in a ridge quantum wire", Physica E, 42(5), 1503-1508. https://doi.org/10.1016/j.physe.2009.12.006
- Khordad, R. (2011), "Effect of position-dependent effective mass on linear and nonlinear optical properties of a cubic quantum dot", Physica B, 406(20), 3911-3916. https://doi.org/10.1016/j.physb.2011.07.022
- Khordad, R. and Bahramiyan, H. (2015), "Impurity position effect on optical properties of various quantum dots", Physica E, 66, 107-115. https://doi.org/10.1016/j.physe.2014.09.021
- Kӧksal, M., Kilicarslan, E., Sari, H. and Sӧkmen, I. (2009), "Magnetic-field effect on the diamagnetic susceptibility of hydrogenic impurities in quantum well-wires", Physica B, 404(21), 3850-3854. https://doi.org/10.1016/j.physb.2009.07.103
-
Kumar, K.M., Peter, A.J. and Lee, C.W. (2012), "Optical properties of a hydrogenic impurity in a confined
$Zn_{1-x}CdxSe/ZnSe$ quantum dot", Superlattices Microst., 51(1), 184-193. https://doi.org/10.1016/j.spmi.2011.11.012 - Latha, M., Rajashabala, S. and Navaneethakrishnan, K. (2006), "Effect of dielectric screening on the binding energies and diamagnetic susceptibility of a donor in a quantum well wire", Phys. Status Solidi B, 243(6), 1219-1228. https://doi.org/10.1002/pssb.200541395
- Li, Y.-X., Liu, J.-J. and Kang, X.-J. (2000), "The effect of a spatially dependent effective mass on hydrogenic impurity binding energy in a finite parabolic quantum well", J. Appl. Phys., 88(5), 2588-2592. https://doi.org/10.1063/1.1286244
- Mughnetsyan, V.N., Barseghyan, M.G. and Kirakosyan, A.A. (2008), "Binding energy and photoionization cross section of hydrogen-like donor impurity in quantum well-wire in electric and magnetic fields", Superlattices Microst., 44(1), 86-95. https://doi.org/10.1016/j.spmi.2008.02.009
- Naimi, Y., Vahedi, J. and Soltani, M.R. (2015), "Effect of position-dependent effective mass on optical properties of spherical nanostructures", Opt. Quant. Electron., 47(8), 2947-2956. https://doi.org/10.1007/s11082-015-0183-5
- Niculescu, E.C. (2011), "Dielectric mismatch effect on the photo-ionization cross section and intersublevel transitions in GaAs nanodots", Optics Commun., 284(13), 3298-3303. https://doi.org/10.1016/j.optcom.2011.02.071
- Niculescu, E.C., Burileanu, L.M., Radu, A. and Lupascu, A. (2011), "Anisotropic optical absorption in quantum well wires induced by high-frequency laser fields", J. Lumin., 131(6), 1113-1120. https://doi.org/10.1016/j.jlumin.2011.02.028
- Ozmen, A., Yakar, Y., Cakir, B. and Atav, U. (2009), "Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot", Optics Commun., 282(19), 3999-4004. https://doi.org/10.1016/j.optcom.2009.06.043
- Peter, A.J. (2009), "The effect of position-dependent effective mass of hydrogenic impurities in parabolic GaAs/GaAlAs quantum dots in a strong magnetic field", Int. J. Mod. Phys. B, 23(26), 5109-5118. https://doi.org/10.1142/S0217979209053394
- Peter, A.J. and Navaneethakrishnan, K. (2008), "Effects of position-dependent effective mass and dielectric function of a hydrogenic donor in a quantum dot", Physica E, 40(8), 2747-2751. https://doi.org/10.1016/j.physe.2007.12.025
- Qi, X.-H., Kang, X.-J. and Liu, J.-J. (1998), "Effect of a spatially dependent effective mass on the hydrogenic impurity binding energy in a finite parabolic quantum well", Phys. Rev. B, 58(16), 10578-10582. https://doi.org/10.1103/PhysRevB.58.10578
- Rajashabala, S. and Navaneethakrishnan, K. (2006), "Effective masses for donor binding energies in quantum well systems", Mod. Phys. Lett. B, 20(24), 1529-1541. https://doi.org/10.1142/S0217984906011633
- Rajashabala, S. and Navaneethakrishnan, K. (2007), "Effective masses for donor binding energies in nonmagnetic and magnetic quantum well systems: Effect of magnetic field", Braz. J. Phys., 37(3B), 1134-1140. https://doi.org/10.1590/S0103-97332007000700011
- Rajashabala, S. and Navaneethakrishnan, K. (2008), "Effects of dielectric screening and position dependent effective mass on donor binding energies and on diamagnetic susceptibility in a quantum well", Superlattices Microst., 43(3), 247-261. https://doi.org/10.1016/j.spmi.2007.11.002
- Rezaei, G., Vaseghi, B., Taghizadeh, F., Vahdani, M.R.K. and Karimi, M.J. (2010),"Intersubband optical absorption coefficient changes and refractive index changes in a two dimensional quantum pseudodot system", Superlattices Microst., 48(5), 450-457. https://doi.org/10.1016/j.spmi.2010.08.009
- Rezaei, G., Vahdani, M.R.K. and Vaseghi, B. (2011), "Nonlinear optical properties of a hydrogenic impurity in an ellipsoidal finite potential quantum dot", Current Appl. Phys., 11(2), 176-181. https://doi.org/10.1016/j.cap.2010.07.002
- Ribeiro, F.J., Latge, A., Pacheco, M. and Barticevic, Z. (1997), "Quantum dots under electric and magnetic fields: Impurity-related electronic properties", J Appl. Phys., 82(1), 270-274. https://doi.org/10.1063/1.365807
- Safarpour, Gh., Izadi, M.A., Novzari, M. and Yazdanpanahi, S. (2014a), "Anisotropy effect on the linear and nonlinear optical properties of a laser dressed donor impurity in a GaAs/GaAlAs nanowire superlattice", Superlattices Microst., 75, 936-947. https://doi.org/10.1016/j.spmi.2014.09.018
- Safarpour, Gh., Izadi, M.A., Novzari, M, Niknam, E. and Moradi, M. (2014b), "Anisotropy effect on the nonlinear optical properties of a three-dimensional quantum dot confined at the center of a cylindrical nano-wire", Physica E, 59, 124-132. https://doi.org/10.1016/j.physe.2014.01.007
- Sarkar, S., Ghosh, A.P., Mandal, A. and Ghosh, M. (2016), "Modulating nonlinear optical properties of impurity doped Quantum dots via the interplay between anisotropy and Gaussian white noise", Superlattices Microst., 90, 297-307. https://doi.org/10.1016/j.spmi.2015.12.023
- Tas, H. and Sahin, M. (2012a), "The electronic properties of core/shell/well/shell spherical quantum dot with and without a hydrogenic impurity", J. Appl. Phys., 111(8), 083702. https://doi.org/10.1063/1.3702874
- Tas, H. and Sahin, M. (2012b), "The inter-sublevel optical properties of a spherical quantum dot-quantum well with and without a donor impurity", J. Appl. Phys., 112(5), 053717. https://doi.org/10.1063/1.4751483
- Tiutiunnyk, A., Tulupenko, V., Mora-Ramos, M.E., Kasapoglu, E., Ungan, F., Sari, H., Sӧkmen, I. and Duque, C.A. (2014), "Electron-related optical responses in triangular quantum dots", Physica E, 60, 127-132. https://doi.org/10.1016/j.physe.2014.02.017
- Vahdani, M.R.K. (2014), "The effect of the electronic intersubband transitions of quantum dots on the linear and nonlinear optical properties of dot-matrix system", Superlattices Microst., 76, 326-338. https://doi.org/10.1016/j.spmi.2014.09.023
- Vahdani, M.R.K. and Rezaei, G. (2009), "Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots", Phys. Lett. A, 373(34), 3079-3084. https://doi.org/10.1016/j.physleta.2009.06.042
- Xie, W. (2012), "Optical anisotropy of a donor in ellipsoidal quantum dots", Physica B, 407(23), 4588-4591. https://doi.org/10.1016/j.physb.2012.08.023
- Xie, W. (2013), "Third-order nonlinear optical susceptibility of a donor in elliptical quantum dots", Superlattices Microst., 53, 49-54. https://doi.org/10.1016/j.spmi.2012.09.009
- Yang, L. and Xie, W. (2012), "Photoionization cross section of a donor impurity in a two dimensional anisotropic quantum dot", Physica B, 407(18), 3884-3887. https://doi.org/10.1016/j.physb.2012.06.015
- Zeng, Z., Garoufalis, C.S., Terzis, A.F. and Baskoutas, S. (2013), "Linear and nonlinear optical properties of ZnS/ZnO core shell quantum dots: Effect of shell thickness, impurity, and dielectric environment", J. Appl. Phys., 114(2), 023510. https://doi.org/10.1063/1.4813094
Cited by
- Vibration analysis of carbon nanotubes with multiple cracks in thermal environment vol.6, pp.1, 2017, https://doi.org/10.12989/anr.2018.6.1.057