DOI QR코드

DOI QR Code

Optical dielectric function of impurity doped Quantum dots in presence of noise

  • Ghosh, Anuja (Department of Chemistry, Physical Chemistry Section, Visva Bharati University) ;
  • Bera, Aindrila (Department of Chemistry, Physical Chemistry Section, Visva Bharati University) ;
  • Ghosh, Manas (Department of Chemistry, Physical Chemistry Section, Visva Bharati University)
  • Received : 2016.10.17
  • Accepted : 2016.11.15
  • Published : 2017.03.25

Abstract

We examine the total optical dielectric function (TODF) of impurity doped GaAs quantum dot (QD) from the viewpoint of anisotropy, position-dependent effective mass (PDEM) and position dependent dielectric screening function (PDDSF), both in presence and absence of noise. The dopant impurity potential is Gaussian in nature and noise employed is Gaussian white noise that has been applied to the doped system via two different modes; additive and multiplicative. A change from fixed effective mass and fixed dielectric constant to those which depend on the dopant coordinate manifestly affects TODF. Presence of noise and also its mode of application bring about more rich subtlety in the observed TODF profiles. The findings indicate promising scope of harnessing the TODF of doped QD systems through expedient control of site of dopant incorporation and application of noise in desired mode.

Keywords

References

  1. Barseghyan, M.G., Kirakosyan, A.A. and Duque, C.A. (2009), "Donor-impurity related binding energy and photoinization cross-section in quantum dots: electric and magnetic fields and hydrostatic pressure effects", Euro. Phys. J. B, 72(4), 521-529. https://doi.org/10.1140/epjb/e2009-00391-0
  2. Baskoutas, S., Paspalakis, E. and Terzis, A.F. (2007), "Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field", J. Phys.: Cond. Matt., 19(39), 395024. https://doi.org/10.1088/0953-8984/19/39/395024
  3. Bera, A., Ganguly, J., Saha, S. and Ghosh, M. (2016), "Interplay between noise and position dependent dielectric screening function in modulating nonlinear optical properties of impurity doped quantum dots", Optik, 127(16), 6771-6778. https://doi.org/10.1016/j.ijleo.2016.04.023
  4. Cakir, B., Yakar, Y., Ozmen, A., Ozgur Sezer, M. and Sahin, M. (2010), "Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot", Superlattices Microst., 47(4), 556-566. https://doi.org/10.1016/j.spmi.2009.12.002
  5. Cakir, B., Yakar, Y. and Ozmen, A. (2012), "Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential", J. Lumin., 132(10), 2659-2664. https://doi.org/10.1016/j.jlumin.2012.03.065
  6. Chen, T. and Xie, W. (2012), "Nonlinear optical properties of a three-dimensional anisotropic quantum dot", Solid State Commun., 152(4), 314-319. https://doi.org/10.1016/j.ssc.2011.11.020
  7. Deng, Z.-Y., Guo, J.-K. and Lai, T.-R. (1994), "Impurity states in a spherical GaAs.$Ga_{1-x}Al_x$ As quantum dot: Effects of the spatial variation of dielectric screening", Phys. Rev. B, 50(8), 5736-5739. https://doi.org/10.1103/PhysRevB.50.5736
  8. Duque, C.A., Porras-Montenegro, N., Barticevic, Z., Pacheco, M. and Oliveira, L.E. (2005),"Electron-hole transitions in self-assembled InAs/GaAs quantum dots: Effects of applied magnetic fields and hydrostatic pressure", Microelectronics J., 36(3), 231-233. https://doi.org/10.1016/j.mejo.2005.04.001
  9. Duque, C.A., Porras-Montenegro, N., Pacheco, M. and Oliveira, L.E. (2006), "Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots", J. Phys.: Cond. Matt., 18(6), 1877. https://doi.org/10.1088/0953-8984/18/6/005
  10. Duque, C.A., Mora-Ramos, M.E., Kasapoglu, E., Ungan, F., Yesilgul, U., Sakiroglu, S., Sari, H. and Sӧkmen, I. (2013), "Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section", J. Lumin., 143, 304-313. https://doi.org/10.1016/j.jlumin.2013.04.048
  11. Ghosh, A.P., Mandal, A., Sarkar, S. and Ghosh, M. (2016), "Influence of position-dependent effective mass on the nonlinear optical properties of impurity doped Quantum dots in presence of Gaussian white noise", Optics Commun., 367, 325-334. https://doi.org/10.1016/j.optcom.2016.01.062
  12. Gulveren, B., Atav, U., Sahin, M. and Tomak, M. (2005), "A parabolic quantum dot with N electrons and an impurity", Physica E, 30(1-2), 143-149. https://doi.org/10.1016/j.physe.2005.08.007
  13. Jayam, Sr.G. and Navaneethakrishnan, K. (2003), "Effects of electric field and hydrostatic pressure on donor binding energies in a spherical quantum dot", Solid State Commun., 126(12), 681-685. https://doi.org/10.1016/S0038-1098(03)00209-6
  14. Karabulut, İ. and Baskoutas, S. (2008), "Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity", J. Appl. Phys., 103(7), 073512. https://doi.org/10.1063/1.2904860
  15. Karabulut, I. and Baskoutas, S. (2009), "Second and third harmonic generation susceptibilities of spherical quantum dots: Effects of impurities, electric field and size", J. Comput. Theor. Nanosci., 6(1), 153-156. https://doi.org/10.1166/jctn.2009.1020
  16. Karabulut, İ., Atav, Ü., Sąfak, H. and Tomak, M. (2007), "Linear and nonlinear intersubb and optical absorptions in an asymmetric rectangular quantum well", Eur. Phys. J. B, 55(3), 283-288. https://doi.org/10.1140/epjb/e2007-00055-1
  17. Kasapoglu, E., Ungan, F., Sari, H., Sӧ kmen, I., Mora-Ramos, M.E. and Duque, C.A. (2014), "Donor impurity states and related optical responses in triangular quantum dots under applied electric field", Superlattices Microst., 73, 171-184. https://doi.org/10.1016/j.spmi.2014.05.023
  18. Khordad, R. (2010), "Effects of position-dependent effective mass of a hydrogenic donor impurity in a ridge quantum wire", Physica E, 42(5), 1503-1508. https://doi.org/10.1016/j.physe.2009.12.006
  19. Khordad, R. (2011), "Effect of position-dependent effective mass on linear and nonlinear optical properties of a cubic quantum dot", Physica B, 406(20), 3911-3916. https://doi.org/10.1016/j.physb.2011.07.022
  20. Khordad, R. and Bahramiyan, H. (2015), "Impurity position effect on optical properties of various quantum dots", Physica E, 66, 107-115. https://doi.org/10.1016/j.physe.2014.09.021
  21. Kӧksal, M., Kilicarslan, E., Sari, H. and Sӧkmen, I. (2009), "Magnetic-field effect on the diamagnetic susceptibility of hydrogenic impurities in quantum well-wires", Physica B, 404(21), 3850-3854. https://doi.org/10.1016/j.physb.2009.07.103
  22. Kumar, K.M., Peter, A.J. and Lee, C.W. (2012), "Optical properties of a hydrogenic impurity in a confined $Zn_{1-x}CdxSe/ZnSe$ quantum dot", Superlattices Microst., 51(1), 184-193. https://doi.org/10.1016/j.spmi.2011.11.012
  23. Latha, M., Rajashabala, S. and Navaneethakrishnan, K. (2006), "Effect of dielectric screening on the binding energies and diamagnetic susceptibility of a donor in a quantum well wire", Phys. Status Solidi B, 243(6), 1219-1228. https://doi.org/10.1002/pssb.200541395
  24. Li, Y.-X., Liu, J.-J. and Kang, X.-J. (2000), "The effect of a spatially dependent effective mass on hydrogenic impurity binding energy in a finite parabolic quantum well", J. Appl. Phys., 88(5), 2588-2592. https://doi.org/10.1063/1.1286244
  25. Mughnetsyan, V.N., Barseghyan, M.G. and Kirakosyan, A.A. (2008), "Binding energy and photoionization cross section of hydrogen-like donor impurity in quantum well-wire in electric and magnetic fields", Superlattices Microst., 44(1), 86-95. https://doi.org/10.1016/j.spmi.2008.02.009
  26. Naimi, Y., Vahedi, J. and Soltani, M.R. (2015), "Effect of position-dependent effective mass on optical properties of spherical nanostructures", Opt. Quant. Electron., 47(8), 2947-2956. https://doi.org/10.1007/s11082-015-0183-5
  27. Niculescu, E.C. (2011), "Dielectric mismatch effect on the photo-ionization cross section and intersublevel transitions in GaAs nanodots", Optics Commun., 284(13), 3298-3303. https://doi.org/10.1016/j.optcom.2011.02.071
  28. Niculescu, E.C., Burileanu, L.M., Radu, A. and Lupascu, A. (2011), "Anisotropic optical absorption in quantum well wires induced by high-frequency laser fields", J. Lumin., 131(6), 1113-1120. https://doi.org/10.1016/j.jlumin.2011.02.028
  29. Ozmen, A., Yakar, Y., Cakir, B. and Atav, U. (2009), "Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot", Optics Commun., 282(19), 3999-4004. https://doi.org/10.1016/j.optcom.2009.06.043
  30. Peter, A.J. (2009), "The effect of position-dependent effective mass of hydrogenic impurities in parabolic GaAs/GaAlAs quantum dots in a strong magnetic field", Int. J. Mod. Phys. B, 23(26), 5109-5118. https://doi.org/10.1142/S0217979209053394
  31. Peter, A.J. and Navaneethakrishnan, K. (2008), "Effects of position-dependent effective mass and dielectric function of a hydrogenic donor in a quantum dot", Physica E, 40(8), 2747-2751. https://doi.org/10.1016/j.physe.2007.12.025
  32. Qi, X.-H., Kang, X.-J. and Liu, J.-J. (1998), "Effect of a spatially dependent effective mass on the hydrogenic impurity binding energy in a finite parabolic quantum well", Phys. Rev. B, 58(16), 10578-10582. https://doi.org/10.1103/PhysRevB.58.10578
  33. Rajashabala, S. and Navaneethakrishnan, K. (2006), "Effective masses for donor binding energies in quantum well systems", Mod. Phys. Lett. B, 20(24), 1529-1541. https://doi.org/10.1142/S0217984906011633
  34. Rajashabala, S. and Navaneethakrishnan, K. (2007), "Effective masses for donor binding energies in nonmagnetic and magnetic quantum well systems: Effect of magnetic field", Braz. J. Phys., 37(3B), 1134-1140. https://doi.org/10.1590/S0103-97332007000700011
  35. Rajashabala, S. and Navaneethakrishnan, K. (2008), "Effects of dielectric screening and position dependent effective mass on donor binding energies and on diamagnetic susceptibility in a quantum well", Superlattices Microst., 43(3), 247-261. https://doi.org/10.1016/j.spmi.2007.11.002
  36. Rezaei, G., Vaseghi, B., Taghizadeh, F., Vahdani, M.R.K. and Karimi, M.J. (2010),"Intersubband optical absorption coefficient changes and refractive index changes in a two dimensional quantum pseudodot system", Superlattices Microst., 48(5), 450-457. https://doi.org/10.1016/j.spmi.2010.08.009
  37. Rezaei, G., Vahdani, M.R.K. and Vaseghi, B. (2011), "Nonlinear optical properties of a hydrogenic impurity in an ellipsoidal finite potential quantum dot", Current Appl. Phys., 11(2), 176-181. https://doi.org/10.1016/j.cap.2010.07.002
  38. Ribeiro, F.J., Latge, A., Pacheco, M. and Barticevic, Z. (1997), "Quantum dots under electric and magnetic fields: Impurity-related electronic properties", J Appl. Phys., 82(1), 270-274. https://doi.org/10.1063/1.365807
  39. Safarpour, Gh., Izadi, M.A., Novzari, M. and Yazdanpanahi, S. (2014a), "Anisotropy effect on the linear and nonlinear optical properties of a laser dressed donor impurity in a GaAs/GaAlAs nanowire superlattice", Superlattices Microst., 75, 936-947. https://doi.org/10.1016/j.spmi.2014.09.018
  40. Safarpour, Gh., Izadi, M.A., Novzari, M, Niknam, E. and Moradi, M. (2014b), "Anisotropy effect on the nonlinear optical properties of a three-dimensional quantum dot confined at the center of a cylindrical nano-wire", Physica E, 59, 124-132. https://doi.org/10.1016/j.physe.2014.01.007
  41. Sarkar, S., Ghosh, A.P., Mandal, A. and Ghosh, M. (2016), "Modulating nonlinear optical properties of impurity doped Quantum dots via the interplay between anisotropy and Gaussian white noise", Superlattices Microst., 90, 297-307. https://doi.org/10.1016/j.spmi.2015.12.023
  42. Tas, H. and Sahin, M. (2012a), "The electronic properties of core/shell/well/shell spherical quantum dot with and without a hydrogenic impurity", J. Appl. Phys., 111(8), 083702. https://doi.org/10.1063/1.3702874
  43. Tas, H. and Sahin, M. (2012b), "The inter-sublevel optical properties of a spherical quantum dot-quantum well with and without a donor impurity", J. Appl. Phys., 112(5), 053717. https://doi.org/10.1063/1.4751483
  44. Tiutiunnyk, A., Tulupenko, V., Mora-Ramos, M.E., Kasapoglu, E., Ungan, F., Sari, H., Sӧkmen, I. and Duque, C.A. (2014), "Electron-related optical responses in triangular quantum dots", Physica E, 60, 127-132. https://doi.org/10.1016/j.physe.2014.02.017
  45. Vahdani, M.R.K. (2014), "The effect of the electronic intersubband transitions of quantum dots on the linear and nonlinear optical properties of dot-matrix system", Superlattices Microst., 76, 326-338. https://doi.org/10.1016/j.spmi.2014.09.023
  46. Vahdani, M.R.K. and Rezaei, G. (2009), "Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots", Phys. Lett. A, 373(34), 3079-3084. https://doi.org/10.1016/j.physleta.2009.06.042
  47. Xie, W. (2012), "Optical anisotropy of a donor in ellipsoidal quantum dots", Physica B, 407(23), 4588-4591. https://doi.org/10.1016/j.physb.2012.08.023
  48. Xie, W. (2013), "Third-order nonlinear optical susceptibility of a donor in elliptical quantum dots", Superlattices Microst., 53, 49-54. https://doi.org/10.1016/j.spmi.2012.09.009
  49. Yang, L. and Xie, W. (2012), "Photoionization cross section of a donor impurity in a two dimensional anisotropic quantum dot", Physica B, 407(18), 3884-3887. https://doi.org/10.1016/j.physb.2012.06.015
  50. Zeng, Z., Garoufalis, C.S., Terzis, A.F. and Baskoutas, S. (2013), "Linear and nonlinear optical properties of ZnS/ZnO core shell quantum dots: Effect of shell thickness, impurity, and dielectric environment", J. Appl. Phys., 114(2), 023510. https://doi.org/10.1063/1.4813094

Cited by

  1. Vibration analysis of carbon nanotubes with multiple cracks in thermal environment vol.6, pp.1, 2017, https://doi.org/10.12989/anr.2018.6.1.057