DOI QR코드

DOI QR Code

Parameter Characterization for Underwater Laser forming of SUS430/Cu/SUS430 Laminated Composite Layer

수중 레이저 굽힘시 SUS430/Cu/SUS430 복합판재 성형 특성 분석

  • Received : 2016.10.11
  • Accepted : 2017.01.16
  • Published : 2017.02.01

Abstract

Laser forming is an advanced process in sheet metal forming in which thermal stress originated from the laser heat source is used to shape the metal sheet. However, substantial waiting time is normally necessary for the workpiece to cool down between consecutive scans so that a steep temperature gradient can be reestablished in the next scan. In order to solve this drawback, laser bending characteristics are experimentally implemented in underwater condition. Laser forming effects under various conditions, including different laser power, scanning velocity, beam diameter, number of passes and material, are investigated. The results show that the underwater laser forming facilitates deliberate forming. The bending angle per respective laser scan is decreased with increasing the number of passes and scanning velocity.

Keywords

References

  1. W. Shichun, J. Zhong, 2002, FEM Simulation of the Deformation Field during the Laser Forming of Sheet Metal, J. Mater. Process. Technol., Vol. 121, No. 2, pp. 269-272. https://doi.org/10.1016/S0924-0136(01)01241-9
  2. J. Magee, J. Sidhu, R. L. Cooke, 2000, A Prototype Laser Forming System, Opt. Lasers Eng., Vol. 34, No. 4, pp. 339-353. https://doi.org/10.1016/S0143-8166(00)00069-5
  3. M. H. Gollo, S. M. Mahdavian, H. M. Naeini, 2011, Statistical Analysis of Parameter Effects on Bending Angle in Laser Forming Process by Pulsed Nd:YAG Laser, Opt. Laser Technol., Vol. 43, No. 3, pp. 475-482. https://doi.org/10.1016/j.optlastec.2010.07.004
  4. M. Riahi, M. H. Gollo, S. N. A. Kalkhoran, 2015, Study the Effect of Gaussian and Uniform Heat Flux on Laser Forming of Bi-layer Sheets, Mech. Ind., Vol. 16, No. 4, pp. 1-9.
  5. J. Kim, S. J. Na, 2009, 3D Laser-forming Strategies for Sheet Metal by Geometrical Information, Opt. Laser Technol., Vol. 41, No. 6, pp. 843-852. https://doi.org/10.1016/j.optlastec.2008.12.001
  6. T. Hennige, S. Holzer, F. Vollertsen, M. Geiger, 1997, On the Working Accuracy of Laser Bending, J. Mater. Process. Technol., Vol. 71, No. 3, pp. 422-432. https://doi.org/10.1016/S0924-0136(97)00108-8
  7. F. G. Arcella, F. H. Froes, 2000, Producing Titanium Aerospace Components from Powder using Laser Forming, JOM, Vol. 52, No. 5, pp. 28-30. https://doi.org/10.1007/s11837-000-0028-x
  8. Y. B. Kim, J. S. Lee, G. A. Lee, S. M. Lee, 2011, An Overview and Prospects for Hybrid Materials, Trends Met. Mater. Eng., Vol. 24, No. 4, pp. 24-30.
  9. C. H. Lee, K. C. Kim, Y. S. Kim, 2012, Study on the Mechanical Properties and Thermal Conductive Properties of Cu/STS/Cu Clad Metal for LED/semiconductor Package Device Lead Frame, J. Weld. Joining, Vol. 30, No. 3, pp. 32-37. https://doi.org/10.5781/KWJS.2012.30.3.230
  10. S. E. Fred, T. Gessmann, J. K. Kim, 2005, Light Emitting Diodes, John Wiley & Sons Inc., p. 13.
  11. D. J. Lee, D. H. Ahn, E. Y. Yoon, S. I. Hong, S. H. Lee, H. S. Kim, 2013, Estimating Interface Bonding Strength in Clad Metals using Digital Image Correlation, Scr. Mater., Vol. 68, No. 11, pp. 893-896. https://doi.org/10.1016/j.scriptamat.2013.02.021
  12. C. Carey, W. J. Cantwell, G. Dearden, K. R. Edwards, S. P. Edwardson, J. D. Mullett, C. J. Williams, K. G.. Watkins, 2007, Effects of Laser Interaction with Graphite Coating, Proc. Laser Assisted Net Shape Eng., Vol. 5, pp. 673-686.