DOI QR코드

DOI QR Code

A 170㎼ Low Noise Amplifier Using Current Reuse Gm-boosting Technique for MedRadio Applications

전류 재사용 Gm-boosting 기술을 이용한 MedRadio 대역에서의 170㎼ 저잡음 증폭기

  • Kim, InSoo (Dept. of Electronics Engineering, Kangwon National University) ;
  • Kwon, Kuduck (Dept. of Electronics Engineering, Kangwon National University)
  • 김인수 (강원대학교 전기전자공학부) ;
  • 권구덕 (강원대학교 전기전자공학부)
  • Received : 2016.12.14
  • Accepted : 2017.01.23
  • Published : 2017.02.25

Abstract

This paper proposes a 401MHz-406MHz low noise amplifier for MedRadio applications. The proposed low noise amplifier adopts a common gate amplifier topology using current reuse gm-boosting technique. The proposed low noise amplifier shows better performance of voltage gain and noise figure than the conventional gm-boosted common gate amplifier in the same power consumption. The proposed current-reuse gm-boosted low noise amplifier achieves a voltage gain of 22 dB, a noise figure of 2.95 dB, and IIP3 of -17 dBm while consuming $170{\mu}W$ from a 0.5 V supply voltage in $0.13{\mu}m$ CMOS process.

본 논문에서는 의료 기기용 401MHz - 406MHz MedRadio 대역에서 사용하는 저잡음 증폭기를 제안한다. 제안한 저잡음 증폭기는 전류 재사용 gm-boosting 기술을 이용한 공통 게이트 증폭기 구조를 채택하여 기존의 gm-boosted 공통 게이트 증폭기에 비해 동일한 전력소모에서 더 높은 전압 이득과 더 낮은 잡음 지수 특성을 얻었다. 제안한 전류 재사용 gm-boosted 저잡음 증폭기는 $0.13{\mu}m$ CMOS 공정을 사용하여 설계하였고, 22 dB의 전압 이득, 2.95 dB의 잡음 지수, -17 dBm의 IIP3 특성을 보이며, 공급 전압 0.5 V에서 $170{\mu}W$의 전력을 소비한다.

Keywords

References

  1. "MICS band plan," FCC, Washington DC, Part 95, FCC rules and regulations, Jan. 2003.
  2. "MedRadio Approval," FCC, Washington DC, Rep. FCC 09-23-A1, Mar. 2009.
  3. B. Razavi, RF microelectronics(2nd Edition) Prentice Hall Upper Saddle River, NJ, 2011.
  4. F. Goodarzy, B. Sedighi, and E. Skafidas, "Micro-Watt Inductorless gm-boost LNA for Biomedical Implants," 2013 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1914-1917.
  5. T. Kim and K. Kwon, "A MedRadio-band low power low noise amplifier for medical devices," IEIE Journal of the Institute of Electronics and Information Enginners, vol. 53, no. 9, pp. 62-66, Sept. 2016.
  6. F. Belmas, F. Hameau, and J. Fournier, "A low power inductorless LNA with double Gm enhancement in 130 nm CMOS," IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1094-1103, May 2012. https://doi.org/10.1109/JSSC.2012.2185533
  7. H. Cruz, H. Huang, S. Lee, and C. Luo, "A 1.3mW Low-IF, Current-Reuse, and Current-Bleeding RF Front-End for the MICS Band With Sensitivity of 97 dBm," IEEE Trans. Circuits Syst.-I: Regular Papers., vol. 62, no. 6, pp. 1627-1636, Jun. 2015. https://doi.org/10.1109/TCSI.2015.2415179
  8. S. Mohamed and Y. Manoli, "Design and implementation of an RF CMOS differential LNA for 403MHz applications," 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 690-693.