DOI QR코드

DOI QR Code

New Tool to Simulate Microbial Contamination of on-Farm Produce: Agent-Based Modeling and Simulation

재배단계 농산물의 안전성 모의실험을 위한 개체기반 프로그램 개발

  • Han, Sanghyun (Microbial Safety Team, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA)) ;
  • Lee, Ki-Hoon (Microbial Safety Team, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA)) ;
  • Yang, Seong-Gyu (Department of Physics, Sungkyunkwan University) ;
  • Kim, Hwang-Yong (Technology Cooperation Bureau, RDA) ;
  • Kim, Hyun-Ju (Microbial Safety Team, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA)) ;
  • Ryu, Jae-Gee (Microbial Safety Team, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
  • 한상현 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 이기훈 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 양성규 (성균관대학교 물리학과) ;
  • 김황용 (농촌진흥청 기술협력국) ;
  • 김현주 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 류재기 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀)
  • Received : 2016.11.03
  • Accepted : 2016.12.14
  • Published : 2017.02.28

Abstract

This study was conducted to develop an agent-based computing platform enabling simulation of on-farm produce contamination by enteric foodborne pathogens, which is herein called PPMCS (Preharvest Produce Microbial Contamination Simulator). Also, fecal contamination of preharvest produce was simulated using PPMCS. Although Agent-based Modeling and Simulation, the tool applied in this study, is rather popular in where socio-economical human behaviors or ecological fate of animals in their niche are to be predicted, the incidence of on-farm produce contamination which are thought to be sporadic has never been simulated using this tool. The agents in PPMCS including crop, animal as a source of fecal contamination, and fly as a vector spreading the fecal contamination are given their intrinsic behaviors that are set to be executed at certain probability. Once all these agents are on-set following the intrinsic behavioral rules, consequences as the sum of all the behaviors in the system can be monitored real-time. When fecal contamination of preharvest produce was simulated in PPMCS as numbers of animals, flies, and initially contaminated plants change, the number of animals intruding cropping area affected most on the number of contaminated plants at harvest. For further application, the behaviors and variables of the agents are adjustable depending on user's own scenario of interest. This feature allows PPMCS to be utilized in where different simulating conditions are tested.

본 연구는 식중독 세균 등 유해미생물에 의한 농산물 오염을 예측하여 대응방안을 마련할 수 있도록 하는데 필요한 모의실험 computing platform을 개발하고자 수행되었다. 농산물 오염은 그 빈도가 매우 낮고, 발생패턴도 극히 불규칙하여 계량적 요소가 많지 않기 때문에 기존의 광범위하게 활용되는 수리모형(Mathematical Modeling)이나 확률통계모형(Probability Statistical Modeling)을 기반으로 한 예측모형은 개발이 어렵다. 이와는 달리 개체기반모형(Agent-based Model)은 목적지향적인 각 개체들이 내재된 특성에 따라 변화하는 환경에서 상황 의존적 또는 자율적 행동을 하였을 때 나타나는 결과를 바탕으로 앞으로의 변화를 예측하는 모형으로 각 개체들에 대한 간단한 행동규칙과 몇 개의 변수를 활용하여 직관적 분석 가능하기 때문에 농산물의 안전성에 영향을 미치는 여러 개체 (농작물, 오염원, 오염매개자)가 상호작용하는 메커니즘을 모의실험하는 경우에 유용하다. 본 연구에서는 Scala와 Java 프로그래밍 언어에 기반을 둔 개체기반모형 개발환경을 지원하는 전용 소프트웨어인 NetLogo를 이용하여 프로그램을 제작하였다. 개발된 모형은 가상의 엽채류 재배지역을 대상으로 가축 또는 야생동물이 출입할 수 있도록 하였고, 이들 동물이 배설하는 분변에 있는 장관유래 식중독 세균에 의해 토양 오염 또는 농작물 오염이 발생될 수 있도록 하였다. 이 오염은 시간이 지남에 따라 점차 소멸되지만 건전한 동물이 오염된 농작물을 섭취하는 경우 다시 동물의 장내로 들어가게 되어 보균 동물이 될 수 있도록 하였고, 역시 이 보균 동물이 배설하는 분변에 식중독 세균이 있도록 설정하였다. 가상 엽채류 재배환경에서 생존하는 식중독 세균은 파리와 같은 위생해충에 의해 다른 곳의 토양이나 농작물에 옮겨질 수 있게 하였다. 작물체는 60일 동안 생장하고, 동물은 개체군의 밀도 증감이 없으며, 파리는 시간이 지남에 따라 개체군 밀도가 변동될 수 있도록 하였다. 동물 개체수, 파리 개체수, 그리고 초기 오염 작물 개체수를 달리하면서 작물체의 미생물 오염을 시뮬레이션한 결과, 다른 요인들 보다는 동물 개체수가 작물체 오염에 가장 큰 영향을 주는 것으로 판단되었다.

Keywords

References

  1. Centers for Disease Control and Prevention.: Multistate outbreaks of Salmonella serotype Poona infections associated with eating cantaloupe from Mexico-United States and Canada, 2000-2002. MMWR, 51, 1044-1047 (2002).
  2. Centers for Disease Control and Prevention.: Multistate outbreaks of Salmonella infections associated with raw tomatoes eaten in restaurants-United States, 2005-2006. MMWR, 56, 909-911 (2007).
  3. Centers for Disease Control and Prevention.: Multistate outbreak of listeriosis associated with Jensen Farms cantaloupe--United States, August-September 2011. MMWR, 60, 1357-1358 (2011).
  4. Grad, Y.H., Lipsitch, M., Feldgarden, M., Arachchi, H.M., Cerqueira, G.C., FitzGerald, M., Godfrey, P., Hass, B.J., Murphy, C.I., Russ, C., Sykes, S., Walker, B.J., Wortman, J.R., Young, S., Zeng, Q., Abouelleil, A., Bochicchio, J., Chauvin, S., DeSment, T., Gujja, S., McCowan, C., Montmayeur, A., Steelman, S., Frimodt-Moller., Petersen, A.M., Struve, C., Krogfelt, K.A., Bingen, E., Weill, F.X., Lander, E.S., Nusbaum, C., Birren, B.W., Hung, D.T., Hanage, W.P.: Genomic epidemiology of the Escherichia coli O104: H4 outbreaks in Europe, 2011. Proc. Natl. Acad. Sci. U.S.A., 109, 3065-3070 (2012). https://doi.org/10.1073/pnas.1121491109
  5. Greene, S.K., Daly, E.R., Talbot, E.A., Demma, L.J., Holzbauer, S., Patel, N.J., Hill, T.A., Walderhaug, M.O., Hoekstra, R.M., Lynch, M.F., Painter, J.A.: Recurrent multistate outbreak of Salmonella Newport associated with tomatoes from contaminated fields, 2005. Epidemiol. Infect., 136, 157-165 (2008).
  6. Centers for Disease Control and Prevention.: Ongoing multistate outbreak of Escherichia coli serotype O157: H7 infections associated with consumption of fresh spinach-United States, September 2006. MMWR, 55, (2006).
  7. Barak, J.D., Schroeder, B.K.: Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. Annu. Rev. Phytopathol., 50, 241-266 (2012). https://doi.org/10.1146/annurev-phyto-081211-172936
  8. Berger, C.N., Sodha, S.V., Shaw, R.K., Griffin, P.M., Pink, D., Hand, P., Frankel, G.: Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ. Microbiol., 12, 2385-2397 (2010). https://doi.org/10.1111/j.1462-2920.2010.02297.x
  9. Brandl, M.T.: Fitness of human enteric pathogens on plants and implications for food safety 1. Annu. Rev. Phytopathol., 44, 367-392 (2006). https://doi.org/10.1146/annurev.phyto.44.070505.143359
  10. Teplitski, M., Barak, J.D., Schneider, K.R.: Human enteric pathogens in produce: un-answered ecological questions with direct implications for food safety. Curr. Opin, Biotechnol., 20, 166-171 (2009). https://doi.org/10.1016/j.copbio.2009.03.002
  11. Gorski, L., Parker, C.T., Liang, A., Cooley, M.B., Jay-Russell, M.T., Gordus, A.G., Atwill, E.R., Mandrell, R.E.: Prevalence, distribution, and diversity of Salmonella enterica in a major produce region of California. Appl. Environ. Microbiol., 77, 2734-2748 (2011). https://doi.org/10.1128/AEM.02321-10
  12. Johnston, L.M., Jaykus, L.A., Moll, D., Martinez, M.C., Anciso, J., Mora, B., Moe, C.L.: A field study of the microbiological quality of fresh produce. J. Food Prot., 68, 1840-1847 (2005). https://doi.org/10.4315/0362-028X-68.9.1840
  13. Kim, W.I., Jo, A.R., Lee, J.H., Kim, S.R., Park, K.H., Nam, K.W., Yoon, Y., Yoon, D.H., Oh, S.Y., Lee, M.H., Ryu, J.G., Kim, H.Y.: Survey of microbial contamination of tomatoes at farms in Korea. J. Food Hyg. Saf., 28, 324-329 (2013). https://doi.org/10.13103/JFHS.2013.28.4.324
  14. Micallef, S.A., Goldstein, R.E.R., George, A., Kleinfelter, L., Boyer, M.S., McLaughlin, C.R., Estrin, A., Ewing, L., Beaubrum, J.J.G., Hanes, D.E., Kothary, M.H., Tall, B.D., Razeq, J.H., Joseph, S.W., Sapkota, A.R.: Occurrence and antibiotic resistance of multiple Salmonella serotypes recovered from water, sediment and soil on mid-Atlantic tomato farms. Environ. Res., 114, 31-39 (2012). https://doi.org/10.1016/j.envres.2012.02.005
  15. Mukherjee, A., Speh, D., Dyck, E., Diez-Gonzalez, F.: Preharvest evaluation of coliforms, Escherichia coli, Salmonella, and Escherichia coli O157: H7 in organic and conventional produce grown by Minnesota farmers. J. Food Prot., 67, 894-900 (2004). https://doi.org/10.4315/0362-028X-67.5.894
  16. Bousquet, F., Le Page, C.: Multi-agent simulations and ecosystem management: a review. Ecol. Model., 176, 313-332 (2004). https://doi.org/10.1016/j.ecolmodel.2004.01.011
  17. Cho, S.J., Na, Y.G., Lee, J.Y., Joh, C.H.: Analysis of the Ecological Impact of Climate Change using ABMS: A Case Study of Polar Bears and Glacier. J. Korean Geogr. Soc., 46, 291-303 (2011).
  18. Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. U.S.A., 99, 7280-7287 (2002). https://doi.org/10.1073/pnas.082080899
  19. Wilensky, U., Evanston, I.: NetLogo: Center for connected learning and computer-based modeling. Northwestern University, Evanston, IL 49-52 (1999).
  20. Hwang, J., Oh, C.: A study on the spread of the foot-andmouth disease in Korea in 2010/2011. J. Korean Data Inf. Sci. Soc., 25, 271-280 (2014).
  21. Ryu, S., Choi, B.: Development of epidemic model using the stochastic method. J. Korean Data Inf. Sci. Soc., 26, 301-312 (2015).
  22. Kim, D.: A study on the strength and limitation of agent based urban models. The Korea Spatial Planning Rev., 75, 69-85 (2012). https://doi.org/10.15793/kspr.2012.75..005
  23. Park, S., An, Y.S., Shin, Y., Lee, S., Sim, W., Moon, J., Jeong, G.Y., Kim, I., Shin, H., Huh, D., Sung, J., Park, C.R.: A Multiagent System to Assess Land-use and Cover Changes Caused by Forest Management Policy Scenarios. J. Korean Geogr. Soc., 50, 255-276 (2015).

Cited by

  1. Comparative Assessment of Good Agricultural Practices Standards in Agricultural Product Quality Control Act with respect to Produce Safety Rule in Food Safety Modernization Act vol.33, pp.1, 2018, https://doi.org/10.13103/JFHS.2018.33.1.12