DOI QR코드

DOI QR Code

Application of Fourier Optics to Defect Inspection of Display Substrates

푸리에 광학의 디스플레이 기판 결함 검출에의 활용

  • Jung, Young Jin (School of Electricity and Electronics, Ulsan College) ;
  • Lee, Kwang (School of Electricity and Electronics, Ulsan College)
  • 정영진 (울산과학대학교 전기전자공학부) ;
  • 이광 (울산과학대학교 전기전자공학부)
  • Received : 2016.12.05
  • Accepted : 2017.02.06
  • Published : 2017.02.25

Abstract

A method for inspecting defects in display substrates utilizing Fourier optics is proposed in this paper. A cost-effective inspection system can be realized with the proposed method, because it does not require a high-magnification microscope. Also, the proposed method can avoid tight tolerance for variations in displacement between substrate and camera, which is stems from shallow depth of field of the high-magnification microscope. In addition, possible damage caused by collisions between substrate and the inspection equipment can be avoided. The decision algorithm can be simpler than for a conventional inspection system, because spatial shift of periodic substrate patterns does not affect the intensity distribution of the diffracted light, by the Fourier transform property. The proposed method is explained with numerical studies, and experiments are carried out to check its feasibility for color-filter substrates of a liquid-crystal display.

본 연구에서는 디스플레이 기판의 결함 검출을 위해 푸리에 광학을 이용하는 방법에 대하여 제안하였다. 제안하는 방법은 고배율의 광학계를 사용하지 않기 때문에 비용적 부담이 적은 결함 검출 시스템을 구현하는데 사용될 수 있다. 그리고, 제안하는 방법은 고배율 광학계의 짧은 피사계 심도에 기인하는 기판과 카메라 간의 거리 변화에 대한 엄격한 허용오차를 피할 수 있다. 또한, 카메라와 기판의 가까운 거리로 생기는 접촉으로 인한 손상의 가능성을 피할 수 있다. 푸리에 변환의 특성에 의해 규칙적 패턴인 기판의 위치변화는 회절된 빛의 세기분포에는 영향을 미치지 않기 때문에 검출 알고리즘을 기존의 방식보다 더 간단하게 구현할 수 있다. 제안하는 결함 검출 방법을 전산모사와 함께 설명하고 액정디스플레이의 컬러필터 기판을 예로 실험을 통해 검증하였다.

Keywords

References

  1. C. F. J. Kuo, K. C. Peng, H. C. Wu, and C. C. Wang, "Automated inspection of micro-defect recognition system," Optics and Lasers in Engineering 70, 6-17 (2015). https://doi.org/10.1016/j.optlaseng.2015.01.009
  2. Y. G. Cen, R. Z. Zhao, L. H. Cen, L. H. Cui, Z. J. Miao, and Zhe Wei, "Defect inspection for TFT-LCD images based on the low-rank matrix reconstruction," Neurocomputing 149, 1206-1215 (2015). https://doi.org/10.1016/j.neucom.2014.09.007
  3. J. H. Kim, S. Ahn, J. W. Jeon, and J. E. Byun, "A high-speed high-resolution vision system for the inspection of TFT LCD," IEEE International Symposium of Industrial Electronics (Pusan, Korea, 2001), pp. 101-105.
  4. D. M. Tsai, Y. H. Tseng, and W. Y. Chiu. "Surface defect detection in low-contrast images using basis image representation," 14th IAPR International Conference on Machine Vision Applications (Tokyo, Japan, May, 2015), pp. 186-189.
  5. V. A. Sindagi and S. Srivastava, "OLED panel defect detection using local inlier-outlier ratios and modified LBP," 14th IAPR International Conference on Machine Vision Applications (Tokyo, Japan, May, 2015), pp. 214-217.
  6. J. H. Kim, T. Y. Lee, and Y. H. Ko, "Self-reference PCSR-G method for detecting defect of flat panel display," Journal of Korea Multimedia Society 18, 312-322 (2015). https://doi.org/10.9717/kmms.2015.18.3.312
  7. D. M. Tai, S. T. Chuang, and Y. H. Tseng, "One-dimensionalbased automatic defect inspection of multiple patterned TFTLCD panels using Fourier image reconstruction," International journal of production research 45, 1297-1321 (2007). https://doi.org/10.1080/00207540600622464
  8. H. I. Son and M. H. Oh, "Real-time automatic inspection of macro defects in in-line TFT fabrication process," Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 226, 178-183 (2011).
  9. K. M. Lee, M. S. Chang, and P. Park, "Periodic comparison method for defects inspection of TFT-LCD panel," Proceedings of the 7th WSEAS International Conference on Robotics, Control & Manufacturing Technology (Hangzhou, China, April, 2007), pp. 279-283.
  10. M. H. Wu, C. S. Fuh, and Hsien-Yei Chen, "Defect inspection and analysis of color filter panel," Image and Recognition 6, 74-90 (2000).
  11. J. J. Lee, K. H. Lee, C. D. Chung, K. H. Park, Y. B. Park, and B. G. Lee, "Pattern elimination method based on perspective transform for defect detection of TFT-LCD," Journal of Korea Multimedia Society 15, 784-793 (2012). https://doi.org/10.9717/kmms.2012.15.6.784
  12. D. C. Tseng, I. L. Chung, P. L. Tsai, and C. M. Chou, "Defect classification for LCD color filters using neuralnetwork decision tree classifier," International Journal of Innovative Computing, Information and Control 7, 3695- 3707 (2011).
  13. S. H. Huang and Y. C. Pan, "Automated visual inspection in the semiconductor industry: A survey," Computers in industry 66, 1-10 (2015). https://doi.org/10.1016/j.compind.2014.10.006
  14. K. Amano, S. Yoshimoto, M. Miyatake, and T. Hirayama, "Basic investigation of noncontact transportation system for large TFT-LCD glass sheet used in CCD inspection section," Precision Engineering 35, 58-64 (2011). https://doi.org/10.1016/j.precisioneng.2010.08.010
  15. M. F. Shirazi, K. Park, R. E. Wijesinghe, H. Jeong, S. Han, P. Kim, M. Jeon, and J. Kim, "Fast industrial inspection of optical thin film using optical coherence tomography," Sensors 16 1598 (2016). https://doi.org/10.3390/s16101598
  16. I. Arias, and J. D. Achenbach, "A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique," Wave Motion 39, 61-75 (2004). https://doi.org/10.1016/j.wavemoti.2003.06.001
  17. K. Kimoto, S. Ueno, and S. Hirose, "Image-based sizing of surface-breaking cracks by SH-wave array ultrasonic testing," Ultrasonics 45, 152-164 (2006). https://doi.org/10.1016/j.ultras.2006.08.006
  18. D. S. Yoon and S. W. Kim, "Rapid defect inspection of display device with optical spatial filtering," International Journal of the Korean Society of Precision Engineering 1, 56-61 (2000).
  19. J. W. Goodman, "Introduction to Fourier optics," 2nd Edition, Mcgraw-Hill Internal editions (1996).
  20. M. Born and E. Wolf, "Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light," Cambridge University Press (1997)
  21. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237 (1972).
  22. M. Guizar-Sicairos and J. R. Fienup, "Image reconstruction by phase retrieval with transverse translation diversity," Proc. of SPIE 7076, 70760A (2008).
  23. Y. Shechtman, Y. C. Eldar, O, Cohen, H. N. Chapman, J. Miao, and M. Segev, "Phase retrieval with application to optical imaging: a contemporary overview," IEEE signal processing magazine 32, 87-109 (2015). https://doi.org/10.1109/MSP.2014.2352673